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FOREWORD

This is one of the two Final Reports of a research sponsored by the Air

Force Office of Scientific Research, and it corresponds to the analytical part

of the investigation. The second Final Report, corresponding to the experi-

mental part, is being issued separately by the Geotechnical Engineering Center

of the University of Texas at Austin, as follows:

"Investigation of Low-Amplitude Compression Wave Velocity in

Anisotropic Material," by Shannon H.H. Lee and Kenneth H. Stokoe, II,

Report GR86-6, August 1986, 320 pages.
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,%,' ABSTRACr

The need for a micromechanical approach to modelling the stress-strain

response of granular soil is discussed and justified. The report focuses on "'

the small shear strain (y < 0.01%) behavior, and investigates the validity of

analytically modelling uniform, rounded-grained quartz sands by arrays of .

identical elastic quartz spheres.t 4s-af -rs--sep,-the stress-strain proper-

ties of"ixA'regular arrays of spheres are studied i4 -some detatl- W4t-h focus

on isotropic and transversely isotropic boundary loading.

An analytical procedure is established for determining the elastic moduli

- of a random assemblage of equal elastic spheres of arbitrary mean porosity,

subjected to isotropic confining pressure. The procedure uses the properties

of the regular arrays already described, ,it accounts for the spatial distri-

bution of porosity, and (Lt calculates the macroscopic moduli through the'Self .

Consistent Method. The procedure was applied to compute the shear and bulk

moduli of assemblages of quartz spheres4 which were then compared with static

and dynamic measurements on quartz sands from the literature. The theoretical

sands are significantly stiffer than tkhe actual soils due to the lower number

of effective contacts in actual sands. However, excellent agreement was found

- with resonant column shear modulus measurements on Ottawa sand, after subject-

ing it to a large number of cycles of shear prestraining, which increased the
. 5*

" number of contacts toward the theoretical value.
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Section 1

INTRODUCTION

The main objective of this report is to present a simple, yet rigorous,

particulate mechanics model of the stress-strain response of granular soil

under isotropic boundary loading at very small shear strains, y, of the order

of 10- 4% or less. The proposed model idealizes sand as a combination of regu-

lar arrays of elastic, rough spheres and uses Mindlin's formulation for the

contacts. In turn, this is the first stage of a long-term attempt to model

sands as 3-D spatial arrangements of regular arrays at both small strains (y <

Yt = 0.01%) and large strains (y > yt = 0.01%), where yt = 0.01% is the thres-

hold strain for densification and pore water pressure buildup(*). A second 0

Sstage will include anisotropically loaded granular media, and the ultimate goal• .. .a .

is to perform 2-D and 3-D computer simulations of arrays of spheres at differ-

ent small and large strain ranges, including analytical modelling of densifica-

tion under boundary cyclic loading.

This is a final report of a research on the subject performed by the

authors in cooperation with a U. of Texas team headed by Prof. Stokoe.

"Elastic constants" of interest at very small strains include the shear

and bulk moduli and the Poisson's Ratio(s). Experimental results and basic

a.. considerations indicate that these "constants" depend on both the void ratio of

the soil and the state of confining stresses. The variations of these moduli

and of the damping of the soil with an applied shear strain up to the threshold

are also of interest, as is the value of the threshold strain itself at which

(*) The concepts of small and large shear strains as used here are consistent

with usual Soil Dynamics terminology, but they do not coincide with that of
traditional Soil Mechanics, where much greater strains, about 1% or larger

are usually of interest.
1-

a, ,
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S - gross sliding occurs at the grains' contacts.
V These small strain soil parameters are very important in geotechnical

engineering problems involving cyclic loading or wave propagation in the soil,

such as: ocean wave loading, soil structure interaction, site response,

ground settlement and liquefaction during earthquakes. Due to this, a great. ~number of experimental studies of small strain behavior have been performed,...-

and correlations have been developed for practical use. Especially important

are the equations for the shear modulus at very small strains, Gmax, in sands

developed by Hardin and Richart (1963) and Seed and Idriss (1970) on the

assumption that these soils can be treated as elastic isotropic solids. In

both correlations, discussed in more detail in Section 2, Gmax = A-(ao)0 .5,

with a,, 02, 03 being the effective principal stresses, o = (01 + 02 + a3)/3

is the mean effective stress and A is a soil constant which depends on void

E ratio or relative density. Both correlations assume that Gmax (and thus, also,

the shear wave velocity, Vs = (Gmax/P)I/), is the same for isotropically or
F anisotropically loaded sand, provided that the mean stress oo is the same;

also, both correlations assume that for the anisotropic loading case Gmax and -

Vs do not change with direction.

.. These assumptions for Gmax in sands have been challenged more recently by
-~. *?the experimental results obtained by Roesler (1979), Knox et al. (1982) and Yu

"'. .. a nd Richart (1984), as discussed in Section 2. Therefore, a mai n motivation . -,

* for this work was the need, suggested by those experimental findings, for a
*%.fresh approach to our basic understanding of Gmax and other small-strain soil

.,. parameters. Some preliminary analytical results previously obtained by the
4 senior author (Dobry et al., 1982) had shown that a particulate mechanics
i approach was very well suited to this purpose, and should be the basis of this

fresh approach.

-4
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3

~ .~ The large strain (0.01% < y < 1%) behavior of granular soils is also very

Important in engineering problems involving cyclic loading, and especially

*those related to earthquakes. At these strains, the stress-strain behavior e

~ becomes strongly nonlinear and hysteretic, and rearrangement of particles take

place producing phenomena such as densification and pore water pressure build-

'up (Silver and Seed, 1971; Youd, 1972; Dobry et al., 1982; National Research%

Council, 1985). A number of continuum mechanics models, based mostly on the

Incremental Theory of Plasticity, try to simulate this behavior and have been

* proposed for soils, as discussed in Section 3.

N A summary literature review of previous relevant particulate mechanics

studies is presented in Section 4. Many of these past investigations have

focused on the very large strain (y > 1%) and strength behavior of granular

soils; at those very large strains, gross sliding and rolling of the grains are

r main contributors to the overall strain, while the elasticity of the particles

and contacts play a minor or negligible role. On the other hand, for the small

-to large strain ranges of interest of the proposed research, the elasticity of :

the particles and the details of the force-displacement response at the contacts

4a are very significant factors. The discussion in Section 4 includes a general

~ model recently proposed for the force-displacement response at the contact

between two identical elastic spheres (Seridi and Dobry, 1984).

The results of the present research are discussed In Sections 5 and 6.

Section 5 presents a detailed study of the differential stress-strain relations

* for various regular arrays of spheres. Section 6 describes an application of ~ '

these findings, using the Self-Consistent Method, to a random arrangement of

regular arrays subjected to isotropic boundary loading, and with the arrangement

* having an arbitrary macroscopic void ratio.

ege".._



Section 2

LABORATORY MEASUREMENTS ON SANDS AT SMALL STRAINS

Starting around 1960, a number of cyclic and dynamic laboratory measure-

ments have been performed to determine the stress-strain behavior of granular

arrays and of natural sands at small strains. Properties studied have in-

cluded: i) maximum shear modulus at very small strains, Gmax; ii) the varia-

a-- tion of secant modulus, G, with shear strain, y; iii) the Poisson's ratio of

the soil; iv) the variation of shear damping ratio with strain; and v) the
%.

threshold shear strain, Yt, at which densification and pore pressure buildup

*~. start. Many of these tests have been conducted in a triaxial cell, on sandr44specimens isotropically or ansotropically consolidated under a biaxal 
stress w

, state (2 -- 03 or 2 = Oi , with the small strain measurements performed 
using -.,

the pulse method, the resonant column or cyclic torsional techniques, and with

particular emphasis on shear modulus determinations. Important results and

Wa ~.. state-of-the-art summaries of these modulus measurements have been presented

by Duffy and Mindlin (1957), Hardin and Richart (1963), Lawrence (1965),

. . Richart et al. (1970), Seed and Idriss (1970), Hardin and Drnevich (1972),

Woods (1978), Iwasaki et al. (1978), and Tatsuoka et al. (1979).

*, "' As mentioned before, "small strains" are defined here by the condition y

% :< yt, as in this range the original geometry of the granular array or sand

remains essentially unchanged, with very few or no particles experiencing

A gross sliding or rolling, and, thus, with the macroscopic strain of the array

,..S being controlled by the elastic deformations of the particles and by localized

slips within the areas of contact areas between particles. In many sands, yt

10 - 4 _ 10-2%; measurements and studies of Yt have been presented by Drnevich

and Richart (1970), Youd (1972), Pyke (1973), Dobry et al. (1980, 1981, 1981a,

- 4
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e 1982), Dyvik et al. (1982), Oner (1984) and National Research Council (1985). -

On the basis of laboratory measurements, Hardin and Richart (1963)

proposed the following expression for Gmax:

Gmax = f(e)(Go) 0 "5  (1)

where e = void ratio, f(e) = 2630(2.17-e)2 /(l+e) for round-grained sands, and

f(e) = 1230(2.97-e) 2/(l+e) for angular-grained sands; both Gmax and oo are in

psi in Eq. 1.

Seed and Idriss (1970) proposed the alternative expression:

Gmax =1,000 K2max (2)

% .44 where Gmax and ao are in psf, and K2max is a function of relative density.

Eqs. 1-2 reflect the conclusion of these and other studies, that Gmax and

V. are mainly a function of void ratio or relative density, and of the mean

4. effective normal stress oo. Other variables, such as static shear stresses,

*' ,'stress history, stress path (compression versus extension loading), frequency "

of cyclic loading, degree of saturation, were found to have, either a small

effect or no effect at all (Richart et al., 1970, Yu and Richart, 1984). One

exception is that a large number of shear prestraining cycles at strains larger

than the threshold was found to increase Gmax significantly (Drnevich and

Richart, 1970).

.- It is useful to make explicit some of the implications of Eqs. 1-2 for an-

isotropically loaded dry sand, either for the general "triaxial" case in which

01 G 02 a 03 or, as is very usually the case in the field, or for the "biaxial"

. case, G1 ito 2 = a3. (The bars have now been dropped from the stresses, as for

a dry sand, 0 - a). These implications are:

.A % A-A_-, A.J

* .- .-.
".4 ',,. 2
*. .:'..
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6

' i) Gmax and Vs depend equally on al, 02 and 03.

ii) For a shear wave propagating in the sand, the value of Vs is the same

whatever the directions of propagation and polarization of the wave.

is:Implication ii) is equivalent to assume that, at very small strains, the

anisotropically loaded sand can be modeled as an isotropically elastic mater-

ial, defined by the two elastic constants Gmax and Poisson's Ratio, v. Under

-. the usual additional assumption that for a dry sand, v 0.3 to 0.4 is a

iJL constant independent of confining stresses, a set of implications similar to i)

and ii) can be obtained, but now for a dilational, P-wave, travelling in this

dry sand. If we call D, Vp the constrained modulus and P-wave velocity, the
.%J-

corresponding implications are:

.- iii) D and Vp depend equally on oI, 02 and 03, with D a(ao)0 5 and V

y,(ao)0.25.>'''

iv) The value of Vp is the same whatever the direction of propagation of

the P-wave.

Five recent experimental studies have attempted to verify in detail this

formulation by Hardin/Richart and Seed/Idriss, and specifically the validity

of implications ±) through iv) above for anisotropically loaded dry sand.

Schmertmann (1978) measured V p and Vs in several directions in a large dry

sand specimen (4 ft diameter by 4 ft high). In these tests, a biaxial state of

stress could be achieved, al = av * 02 = 03 = ah, with av, Gh = vertical, hori-

zontal stresses, with the stresses varying between 5 to 20 psi, and with a

stress ratio, 01/a3 = I to 3. He found that there was a slight amount of inher-

"" ent anisotropy (different wave velocities in the horizontal and vertical direc-

tions when ov  Oh). He also found that for constant ao  1I/3(ov + 2 Oh) and .b

L variable o/o3, Vs varied less than 10%, thus verifying the basic Hardin/RicharW

assumption as a first approximation for Vs in this biaxial case. However, Vp

pN.'

:: I.-7
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was strongly affected by o1/03. The results suggested that, for P-waves propa-

gating in the vertical direction, Vp depended more on v than on o . L

Roesler (1979) measured Vs using a 1 ft
3 cubical dry sand sample. In

• . these tests, a true triaxial state of stresses was achieved. Test pressures

ranged from 5.8 psi to 23 psi, with 01/03 = I to 1.8. He propagated the

,4 ". shear waves along either of the principal stress directions (aa), with particle

*- ,motions polarized in another principal direction (ob). The third principal
.'

direction, or out-of-plane direction, is neither a direction of propagation nor

. -polarization (Oc). Roesler found that his results followed the law:

Vs B a0.14 9  0.107 a 0  (3)

where B = constant. These results are illustrated in Fig. 1. For isotropic

confinement (oo=Oa=Ob=Oc) they do confirm the Hardin-Richart law that Gmax

Ic(ao)0 "5 and Vs a(Go)
0 2 5, as 1.49 + 0.107 = 0.256. However, for the general

case, Eq. 3 contradicts Eqs. 1-2, in that now V. is completely independent of

.' c . Also, Roesler's results for this case indicate that V. is a function of

L.direction and the sand cannot be treated as an isotropic elastic material;

therefore, more than two elastic constants are necessary to define it.

Stokoe et al. (1980) developed at the University of Texas at Austin

(U.T.) a large scale, 7 ft3 cubical triaxial facility, for the specific pur-
4. .. ..

,. .,. pose of measuring V5 and Vp in dry sand. In this facility, a triaxial state .

of stress, o * 02 * 03 can also be achieved. All tests performed to date .

at U.T. have used a local medium to fine, washed mortar sand classified as SP,

.,{", with effective grain size, DI0 = 0.28 mm and a uniformity coefficient Cu = 1.7.

The sand is placed by the raining technique and is tested dry. Values of

principal stresses used have ranged between 10 psi and 40 psi, with the stress
.. ratio, 01/03 = I to 4. Knox et al. (1982) used this facility to study V and,

rto 01/0 5

.0
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similarly to Roesler, they propagated the shear waves along one of the

principal stresses (ca), and polarized parallel to another principal stress

(0b). They expressed Vs as: mc

Vs = F Oa
a  Ob b acc  (4) "

where F = constant. They found values of ma= mb = 0.09 to 0.12, and mc = 0 to

0.01. Except for some minor differences, these results are identical to those

of Roesler, including the independence of Vs on ac . Kopperman et al. (1982)

used the same U.T. facility and sand to study P-waves and concluded that:

VP = L Oa0.22 wav (5)p

where L = constant. The insensitivity of Vp to variations in the stresses ab

and ac perpendicular to wave propagation is illustrated by Fig. 2. Again, and

similar to Schmertmann's findings, these results indicate that V is strongly j

dependent on direction of propagation when the sand is anisotroplcally loaded.

Yu and Rlchart (1984) performed resonant column tests on three sands sub-

jected to a biaxial state of stress. Their results essentially agreed with

those of Roesler and Knox; however, they found some effect of the stress ratio

on the results. They proposed for Gmax the expression:

Gmax CPa 0.49 v0.26 0.25 (1-a Kn2 ) (6)

where C=constant, Pa=atmospheric pressure, a=0.15 to 0.23, with a mean value of

0.18, Kn=(al/o3-1)/[(aU/O3)max-1], and (Ol/a2)max corresponds to shear failure

, of the sand. Except for the factor 1-a Kn2 , which is usually between 0.8 and

1, Eq. 6 is consistent with Eqs. 3 and 4 proposed by Roesler and Knox.

Therefore, all of these results clearly indicate that implications i)"_..

* through iv) above, associated with the currently used correlations for Vp and

• I.
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. Vs in sands, need to be revised and upgraded. In most cases of practical

interest, sands are anisotropically loaded, and thus more than two elastic

constants may be needed to specify the behavior of the soil at very small

-. strains. For the typical biaxial state of stresses existing in the field under

i geostatic conditions, for which all horizontal normal stresses are equal but

different from the vertical stress, the sand will behave as a cross-anisotropic

elastic solid and 5 elastic constants will be generally needed (Love, 1927,

Sokolnikoff, 1956). In the more general case of o * 02 * 03, as it may happen

in the soil under a structure, the sand can be described as an orthotropic

P% elastic solid, with three planes of elastic symmetry, and a total of 9 elastic

constants are needed (Sokolnikoff, 1956).

The previous discussion focused on the elastic properties of sand at very

small strains, 1 10-4%, and especially on Vp and V measurements. If larger

loads and strains are applied to a dry granular soil, compression-wave type

loading induces a nonlinear locking stress-strain response, while shear-wave

type loading induces a yielding response (see Fig. 3). This behavior is

obviously associated with the particulate nature of the soil (Seed and Idriss,

1970; Hardin and Drenvich, 1972). During cyclic shear loading in sand, stress-

-" strain hysteresis loops are generated such as shown in Fig. 4; these loops are

essentially strain-rate and frequency independent. For small strains, y < yt

10-2%, the hysteretic loop repeats itself cycle after cycle, and no permanent

volumetric strain is observed, thus suggesting an essentially non-destructive

II though nonlinear behavior, controlled mainly by the response of the contacts

e, between the grains, and with no coupling between shear and volumetric strains.

At shear strains, y > ¥t, although the overall behavior remains approximately

the same, densification occurs, and there is also some increase in stiffness,

with the shear stress-strain curve and the tips of the loop going up a little
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as the number of cycles increases (e i.4. Frtesri ag

I0.01% < y < 0.1% to 1%, the monotonic and cyclic behavior of the sand is always

contractive, that is, shear strains generate exclusively compressive volumetric 1

strains, independently of the density of the sand. However, for strains larger

than about y =1%, a mixture oE contractive and dilative behavior is measured

in dense sands, with expansion of the soil occurring during part of the cycle

in cyclic shear loading (Youd, 1972). At all strains, and for both shear and

compression-type cyclic loading, the stress-strain response of dry granular

soil is strongly dependent on the level of normal stresses acting on it.

NI
O.1?
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Section 3

STRESS-STRAIN MATHEMATICAL MODELLING

A A significant amount of research has been directed to obtain stress-strain

.' "~'% constitutive relations for cyclic and dynamic loading of soil. Most of these

, ,studies have modelled the soil as an elastic-plastic material, using as a basis

tool the Incremental Theory of Plasticity. In this type of model, which is

particularly appropriate for dry granular soil, the total strain increment is
e p

"* . equal to the sum of elastic and plastic strain increments, de = de + d ,ij ij ij

with all de being strain rate independent (Drucker and Prager, 1952; Reyes,

, 1966; Chen, 1975; Lade and Duncan, 1975; Prevost, 1978; Hardin, 1978). Based
A

on the Vp measurements by Roesler previously described in Section 2, Hardin

e
(1980) suggested the following expressions for dc in dry granular soil:

ij

e- F(e) * dox do dz.
d pl-na Sxoxn Sy an S a. n

e 2(1 + v)F(e) * dTxy

df u:xon ar haleb (7)
Pa -n s n/2  T 2+na Sxy ( Ox y .",

','y o Gx0 -"

e e e
Swhere normal strain, 2 = engineering shear strain, and four

additional equations are obtained by permutation of subscripts. In these

0equations, JR,,, and ? = normal stresses; T = a shear stress; P=

= atmospheric pr 'oir--. -i21 j + (1. 7 e, where e = void ratio. Eqs. 7

contain tivf ,. ' tr - , SX , , S and v); based on Roesler's

experimen-i~ wr .t ,rp-s n 0.5 was proposed.

P J A vare-,v vi i, .. .: m,",assowated flow roles have been proposed

for the p, - ri: :. r.-' : , * he form:

_,. , .. .' * .. -* ..* .. .... .""' -" ." . " ". " " - ". "" ". " -". - "- "-"".- - '
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d j X (8)

where X - coefficient of proportionality, and g(oij) is the plastic potential

function, which may or may not coincide with the yield function f(aij) at which

E., plastic strains develop. Figure 5 shows the shapes of a number of plastic

potential surfaces proposed for soil by different authors.

;' q. In the simplest type of elastic-plastic model, there is only one yield

(failure) surface. For stresses below that surface, the behavior is assumed to

be perfectly elastic. However, granular and other soils develop plastic strains

even at the small shear strains of interest to this report. To allow for

this behavior, a wide variety of strain-hardening laws have been proposed,

including families of yield surfaces and specific strain-hardening yield rules.

In some of these models, the elastic region is completely eliminated, thus

allowing for plastic flow at very low levels of stress and strain (Mroz, 1967;

~. ; . Prevost, 1977). One of the earliest developments included various cap models,

based on the work done at Cambridge University by Roscoe and his co-workers

-. (i.e., Roscoe, 1970). This includes the models proposed in several papers by

DiMaggio and Sandler (1971), which have been widely used for dynamic analyses

of soil response to explosions. Several capped yield models are included in

S - Fig. 5.

An important aspect of the development o. elastic-plastic models is the

definition of the strain-hardening law, which defines the modifications of the .

yield surface(s) in the course of the plastic flow. This is especially

critical for cyclic loading, where the type of strain-hardenIng determines the

stress-strain behavior after load reversals. In most of the models described

above, which were originally developed for monotonic loading, isotropic strain-

hardening is assumed (Hill, 1950), with the yield surfaces expanding as the .

" " "°

"-' '€ '.' - - .- '. " - # - " - - .'. ..---. ". ." .- . .- .- - - .. . . . ." - . - . . . . . . --- -". . " . " " .' • . , -'.-'.
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-" stresses increase (Fig. 6). When isotropic hardening is assumed, a large

amount of load reversal is required for additional yielding to occur, in con-

* tradiction with the observed behavior of experimental hysteresis loops such as

shown in Fig. 4.

A better alternative for earthquake loading is provided by the kinematic

strain-hardening law, sketched in Figure 7. The kinematic model was originally

, .proposed by Ishlinsky (1954) and Prager (1955). lwan (1967) proposed a reo-

logical representation for the stress-strain model, constituted by infinite

" elasto-plastic elements, placed in series or in parallel. This model is a non-

frictional one, with all the nested yield surfaces being circular cylinders in

principal stress space. Mroz (1967, 1969) proposed a general model for elastic-

plastic materials, composed also of a field of yield surfaces, with a combina-

tLion of kinematic and isotropic strain-hardening laws. Prevost (Prevost and

Hoeg, 1975; Prevost, 1977, 1978), Mroz, Norris and Zienkiewicz (1978, 1979) and "

Vicente and Dobry (1985), have proposed to use this model to predict static and

,"" cyclic behavior of soils. The model is flexible enough to allow its adaptation ,.

to the cases of drained and undrained loading, and to incorporate important

large strain cyclic phenomena such as densification, liquefaction and stiffness

degradation. Anisotropically loaded soils are represented by nonsymmetric

nested surfaces in stress space. Under cyclic shear loading, the strain-harden-

ing behavior is basically kinematic for the reasons described above. A simul- '.

S,-taneous isotropic hardening (or softening) is allowed with the corresponding

expansion or contraction of the yield surfaces as cyclic loading develops. This

isotropic expansion (contraction) thus could simulate in dry granular soil the

observed increase ( f stiffness caused by cyclic loading above yt 10-2%.

.. .-..'

. " "*4 * ,-.- - - -...* *
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Section 4 •b

THE MICROMECHANICAL APPROACH

Eqs. 1-2 for Gmax and similar expressions for other small strain moduli in'

dry sands assume that the controlling normal stress parameter is the mean stress .

4.%

GO: Gmax = f(co ) °  This functional relationship, selected on the basis of ,,

limited experimental evidence, was no doubt influenced by a continuum mechanics ' -

view of the situation, as co is proportional to the first invariant of the .

i ,.

stress tensor. As discussed in Section 2, more detailed measurements have
revealed the elastic anisotropy of a dry sand subjected to different principal

stresses, andue that he controlngat the functional relationship between ss

principal stresses i, f2, t3, on one hand, and Gma x and other elastic constants

on the o(the stut as o ) is rther Gma x  f(a,b); similarly, for

those recent experimental finings in sands This strongly suggests that a

micromechanical (particulate mechanics) approach shoul ed to d to analytically

simulate and generalize the experimental observations rltnh be e

~~A great number of studies have been performed using particulate models to '.

Sunderstand and model the behavior of cohesionless soils and other granular s t-

materials Most of these investigations have been analytical, but they have .

also included measurements in actual granular soils as well as in regular or

i ii f"random arrays of spheres (3-D) or dlsks/rods (2-D); a number of them have wi
414

II %I

a grt nuber oa-dfosts haerbeenteformedics use ptcatet e l two-

• uestand nde modesen behavirof coei nlss srols) Sand othgrnuar

sumarils. Most ofe thesenvegt ionyrs ae been8 analtic, butam they5) hav

rand•  " " Somt array Kof spheres R (-a ) or disks/rods,1 Whie; a19numberro them) hae Ai!

II I.

4. °

4'. , . °. -'
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S. Dobry and Grivas (1978), between others. The proceedings of two US/Japan

seminars on the mechanics of granular materials contain excellent papers on

the subject (Cowin and Satake, 1978; Jenkins and Satake, 1983).

.51 A number of these studies have focused on the probabilistic aspects and

statistical distributions of different parameters within the soil or granular

medium, and their effect on the mechanical behavior of the array. These have

included investigations of the orientations of the individual particles, of I
the spatial distribution of porosity, and of the distribution of number,

orientation and levels of force transmitted by the contacts, conducted between

others by Smith et al. (1929), Dantu (1957), Field (1963), Mogami (1965),

Grivas and Harr (1974), Oda (1974), Yanagisawa (1978), Shahinpoor and Shahrpass

(1982), Nemat-Nasser and Mehrabadi (1983), and Dobry and Petrakis (1984).

Many of those analytical investigations, computer simulations and obser-

vations have focused on the stress-strain behavior at very large strains and

on the failure of dry granular media. Because of this very large strain

nature of the phenomena, the load-deformation characteristics of the particles'

contacts have played a minor or negligible role, and the emphasis has been on

changes in the geometric arrangement of the grains due to their sliding and

-'~ rolling. In some of these investigations the compliance of the contacts has

been eliminated altogether by assuming perfectly rigid particles. Some impor-

tant references here are Rowe (1962), Morgenstern (1963), Home (1965),

Konishi (1978), and Oda et al. (1983). Cundall and Strack (1983) performed

numerical experiments of 2-D random arrays of disks using an explicit finite

. i difference procedure (see Fig. 8). In these, the authors successfully simu-

". lated "compression triaxial" loading to failure, and studied in detail the

spatial distribution of contact forces and the distribution and relative con-

tributions of sliding and rolling to macroscopic strain, during anisotropic

--=' •

-U .... _ • , . . , ° . . . . °
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* deviatoric loading with constant a3. One of their conclusions for this

deviatoric loading is that the major principal stress a1 is transmitted mainly

by a few "stiff chains" of particles having large contact forces, with the

: :. particles in between chains being lightly loaded; sliding and rolling occurs

mainly in those lightly loaded regions. Oner (1984) worked with a similar

numerical scheme to predict the observed threshold strain Yt at which sliding

and rolling starts, while Dobry et al. (1982) used a regular simple cubic array

of spheres for the same purpose.

Of special interest are the investigations which have studied the stress-

strain behavior of granular arrays considering the elasticity of the particles
P.

' and the corresponding compliances at the contacts. Most of these studies have

assumed spherical grain shapes and elastically isotropic grains characterized

*,. "J by three material constants (two elastic and one friction coefficient). All

of these investigations have used the normal and tangential compliances at the

contact between two elastic bodies, derived by Hertz (1882), Cattaneo (1938),

and Mindlin and his co-workers (Mindlin, 1949, Mindlin et al. 1951, Mindlin

r and Deresiewicz, 1953). Figures 9 and 10 show, respectively, the distorsion of

two spheres subjected to normal (N) and tangential (T) contact loads, and the

tangential load-displacement curve for constant N. As noted in the summary

reviews of the contact theory by Deresiewicz (1958, 1973) and Dobry and Grivas

(1978), Mindlin and his co-workers developed the basic theoretical framework

of the contact problem, and solved it for some special force time histories;
% "~

*however, the general problem of computing the displacements for a contact"i i+

force P = N + T, whose magnitude and direction change arbitrarily, remained

unsollved. Only very recently, Seridi and Dobry (1984) provided a general and

practical solution to this general problem, thus making it possible the use of

direct stiffness and finite difference techniques to simulate the 3-D response

% .. e --
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". .; of granular array at small strains. A more detailed discussion of this general

solution is presented in Section 4.1.

The contact theory has been repeatedly used to predict the elastic stress- -'

strain properties of granular arrays of spheres. Several authors calculated

the influence of isotropic confining pressure on Vp and Vs for various arrays

of smooth and rough spheres, and concluded that both velocities increase pro-

portionally to (0o)1/6 (Hara, 1935, Takahashi and Sato, 1950, Gassman, 1951,

White and Sengbush, 1953, Brandt, 1955). Of special interest here are some

detailed analytical and experimental investigations of regular arrays of equal

spheres. Deresiewicz (1958) lists the five stable regular arrays included in

Table 1 and sketched in Fig. 11, which range from the loosest simple cubic,

(void ratio, e = 0.91) to the densest pyramidal (also called face centered

cubic array) and tethraedral (also called hexagonal close packed), both with e

- 0.35. More complete lists and descriptions of feasible regular arrays have

been presented by Filep (1936), Brown (1978) and Shahinpoor (1981). Table 2

reproduces one of these lists containing 31 arrays, while Fig. 12 presents

elevation and plane views for one of the loosest arrays of Table 2 (Cell No. 2

with e = 1.94). Deresiewicz (1958a) investigated in detail the simple cubic

: "V. array subjected to an initial isotropic loading followed by an arbitrary stress

history. He found that the array is statically determinate in this case, pro-

" ": vided that the stress field is uniform, with a one-to-one correspondence be-

4."' ... ' tween the nine components of the stress tensor and the nine independent com-

ponents of the contact forces. Whitman et al. (1964) studied a 2-D version of

the simple cubic array subjected to triaxial and confined compression. Duffy

-. and Mindlin (1957), Duffy (1959) and Hendron (1963) investigated the densest

arrays of Fig. 11 and Table 1, which are statically indeterminate, including

some measurements of compressional (rod) wave velocity, VL, in stainless steel

- I. -:
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granular bars loaded isotropically (see Fig. 13). As shown in the figure, the

measured values Of VL are somewhat smaller than predicted, with the difference d~

being greater at small values of o, and with this difference increasing for

-( ~ the low tolerance balls; at high pressures the measured VL approach the pre-

dicted one. As a result, the observed VL cz(ao)m, where m > 1/6 = 0.167 pre-

J dicted by the theory. This difference is explained by Deresiewicz (1958), by

the small differences in size between the actual spheres, which results in the

number of actual, load-transmitting contacts being smaller than predicted;

thus, the array is less stiff than calculated. When the tolerance becomes

higher or the pressure increases, the number of these actual contacts also

increases and approaches the theoretical value, and thus the measured velocity

also approaches the prediction. As discussed in Section 2, values of m =0.25

> 0.167 have also been measured for V5 in isotropically loaded sands, most

probably due to the same reason: an increase in the number of actual contacts

as 00 increases.

- Several approaches have been used to model the effect of deviations from

regularity in arrays of equal or unequal spheres. Smith et al. (1929) pro-

posed considering a random array as formed by clusters of loose and dense reg-

~ '. ular arrays, each present in such proportion as to yield the overall void -

ratio or porosity; this idea was generalized by Munro and Jowitt (1974) and

Brown (1978), who used the concept of maximum entropy to find the contribution

V of each regular array. Ko and Scott (1967) used a similar procedure to inves-

tigate the stress-strain behavior under isotropic compression; in this study,

"holey" models were used in which some of the spheres in both the loose and

the dense regular component array, are slightly smaller than the other spheres.

J In this way the effect on the bulk modulus of the increased number of contacts

caused by an increasing pressure, was incorporated into the model. Perry and

'o I-
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Brown (1981) studied the influence of having different size spheres on the
p"."

compliance of the array. Davis and Deresiewicz (1977) investigated the cor-

pressibility of a 3-D random array of smooth equal spheres subjected to iso-

. "tropic loading. Serrano and Rodrigues-Ortiz (1973) suggested a method for

generating random configurations of unequal disks or spheres having a pre-

" "scribed grain size distribution; their work was continued by the 2-D numerical

simulations by Cundall and by Oner, previously discussed.

4.1 General Solution of the Contact Problem

As previously discussed, Mindlin and Deresiewicz studied the problem of ""
the load-displacement behavior of two spheres in contact. In its most general

+
formulation, the problem is to relate an arbitrary force time history P(t) =

Tx(t)i + Ty(t)j + N(t)k, transmitted through the contact (no twisting moments
+

are considered), to the corresponding displacement time history D(t) = 6x(t)i

+ 6y(t) + c(t)k of center 0 of one sphere relative to center 0' of the other

sphere (see Figs. 9 and 14). Tx, Ty, 6x, 6y are tangential forces and dis-

placements, while N and a are the normal force and displacement. Mindlin and
r

Dereslewicz established the general framework for the solution of this problem,

and they obtained closed form solutions for the following particular cases: i)

normal load only, N * 0, Tx = Ty = 0 (Hertz problem); Ii) N constant and Tx

increasing or decreasing with Ty = 0; and iii) a normal load N followed by an

Si oscillating oblique force of constant dT./dN and Ty= 0. However, the general

U' problem of obtaining D(t) for an arbitrary, monotonically or cyclically vary-
+

ing P(t) was not solved until very recently by Seridi and Dobry (1984). This

solution of the contact problem, which has been implemented by means of 4.

- 'currently available computer code CONTACT, is an elastic-plastic incremental

model, where all yield surfaces are cones of angle f in force space (N, Tx,

,.

'p. '5*;
" , , -".'" . ""4 " """ ". " '.: '''"..." .,. . . .". '. ."." "." i . . "" " ," .",% v ., , ..i.;.-.;
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Ty) see Fig. 14. The coaes translate without rotation and without changing

their shape or size (kinematic strain-hardening), and the current positions of
+

the apexes of the cones reflect the prior force history P(t). A modified form O.

of the normality rule is applicable, and the displacement increment dD is

computed as:

2
dN(l-vs )a dN dTt (9)";dD = k + f - n + - t (9) - ,

E- Ho "e

where Es, vs, f are the material properties of the spheres, a = radius of

contact area between the two spheres, H, Ho, He are tangential elastic and

'5 elasto-plastic moduli, and dTn, dTt are the outward normal and tangential corn-

ponents (with respect to the yield surface) of the applied tangential force

increment dT = dTn + dTt. As demonstrated by Seridi and Dobry (1984), this

elastic-plastic general model reproduces identically all equations developed

by Mindlin and Deresiewicz for all their particular cases of loading, and
+ +

A" allows computing D(t) for any arbitrary P(t).

The availability of this general solution to the contact problem is crit-

ical to the mathematical modelling of the small strain stress-strain response

of a granular soil by models of spheres. The existing program CONTACT relating

P and D can now be used as a basic tool, in conjunction with direct stiffness

. , or finite difference techniques, to study the behavior of either regular or

random arrays of spheres.

.. .. '.

'a "%°.,

J. ,%

.. .. .. .. .. .. .. .. .. .. .. S..



Section 5

DIFFERENTIAL STRESS-STRAIN RELATIONS FOR REGULAR ARRAYS OF SPHERES

The general solution of the problem of the contact between two spheres can

," be used to derive incremental stress-strain relationships for regular arrays of

spheres. These stress-strain relationships are discussed in this section, with .

particular emphasis on the behavior under isotropic loading followed by very

small but arbitrary stress and strain increments, and for the following regular

• "a r r a y s :

i) simple cubic array (sc, see Figs. Ila and 17), discussed in Section 5.1

ii) body centered cubic array (bcc, see Fig. 15); discussed in Section 5.2

iii) face centered cubic or pyramidal array (fcc, see Figs. lid and 16);

discussed in Section 5.3 .

iv) cubical tetrahedral (ct, see Fig. Ilb) and tetragonal-sphenoidal arrays

(ts, see Fig. lc); discussed in Section 5.4.

Most of these incremental stress-strain relations were taken from Deresiewicz

(1958), Duffy and Mindlin (1957) and Moklhouf and Stewart (1967). However,

some are new; in particular, the body centered cubic array is discussed here -. .p

for the first time.

In addition to the five regular arrays listed above, a sixth regular array

is the hexagonal closed packed or tetrahedral array (hcp, see Fig. lie, see

.4 also Deresiewicz, 1958). Table 1 lists the most important parameters of all

.[ six arrays. A comparison of the behavior of the sc, bcc and fcc cubic arrays

• 'is presented in Section 5.5.

21
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5.1 Simple Cubic Array (sc)

The simple cubic array sketched in Figs. 11a and 17 is the simplest of all

regular arrays of equal spheres. One sphere of radius R represents the whole N

.".. array, and for a uniform stress field this is a statically determinate system ,,.,v

with a one-to-cne correspondence between the array's stresses and the contact

forces (Deresiewicz, 1958). If the normal stresses parallel to the axes of the

. array are aii (i = 1,2,3, see Fig. 17), the normal contact forces Ni are: N4 ""

4R2 oii(*). If the shear stresses parallel to the axes of the array are aij

(i,j = 1,2,3 and i * j), the corresponding tangential contact forces and Tij "

4R2 oij. These relations occur due to equilibrium and are independent of the

(7 previous history of stresses. Therefore, they are also valid for any stress and p

force increments at any stage during the loading, provided that no gross sliding
of the contact has taken place d = 4R2 oi, dTj = 4R2 daij. Figure 17 il-

.."~ ~ ~ ~ ~~ae pihaloj= 0 o le bysl arbir diceet d4Ran oj.

lustrates the case in which an anisotropic state of stresses is applied first,

Ait al i = 0, followed by small arbitrary increments daii and daj.

A similar set of simple relations is valid in this case between the array

strains and the displacements between spheres; these relations are obtained for

a uniform strain field based on simple geometric considerations. If (Xi = normal

* relative displacement of centers of the two adjacent spheres separated by con

tact i, and 6ij, 6ik = tangential relative displacements between the same two

centers, then: cii = ai/(2 R); and Yij = 2cij - (6ij + 6ji)/(2R), where eiI =

normal strain, and yij = engineering shear strain of the array. Again, all ,

these relations are independent of the prior history of strains and are valid I -

for incremental displacements and strains.
.-. ,...

(*) Indicial tensor notation is not used here, that is, aii does not imply a

sum of several terms.

-P- * 1..qX :~i..
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The elastic stiffnesses corresponding to small stress and strain incre-

ments applied to the array subsequent to an isotropic stress state, Ol = 22 =

023 = co, aij =0 are:

dal 1  Sl ll 0 0 0 0 0 de lk

d02 2  0 S2222 0 0 0 0 dE22

da3 3  0 0 S3 3 33  0 0 0 dE33 (10)

do1 2  0 0 0 S1212 0 0 dE12

da1 3  0 0 0 0 S1313 0 dE13

d0 23  0 0 0 0 0 2323 de23 -

i~ L.

3 1/3 -2/3 2 1/3
where SIM = 2222 S3333 = j  l-vsj (aoGsj

2 (1

, 3 1/3 2(1-vs)1/3 2 1/3 .
S12 1 2 = S1313 =S2323 2 (2-vs) (ooGs)

Notice that the stiffness matrix is diagonal, and therefore the Poisson's

% ratio of the array, v = dE2 2/dell = 0, for "triaxial" loading corresponding to

increasing all and constant 022 = 033 = 0o. The array has a v = 0 quite

independently of the values of ao and vs (see Fig. 20).

Note that, for a given 0o, Eqs. 10-11 describe a linearly elastic

I anisotropic medium. The necessary and sufficient conditions for this medium to "

be isotropic are of the type SIll - S1122 = S1212. These are satisfied only

for a Poisson's ratio of the spheres, vs = 0. This assumption results in an

isotropic medium with v = 0.

SFor the case of an anisotropic state of stress, Oil 022 033, Oij = 0,

__ __ _ __.l- - * -. _... - -<.
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the coefficients become:

2

3 1/3 2-2/3 2 1/3
S22 2 - 1-v [o 22GsJ (12) .:

2

3 1/3 2 1/3i I/3 2 I/3 j.'/.
S3333 = (3 (lvsJ2 / 3 (0 3 3 GsJ

2/3
3 1/3 (1-v,)1/3 Gs --

S-jj 4(-3J * 1v)/ j (13)
2jij 2 1/3 I 1/3

+iJ J

where G. and vs are the shear modulus and Poisson's Ratio of the material of

* the spheres.

The array locks under "triaxial" conditions (all increasing with 022 =

033 = Oo = constant), while it fails in pure shear (a12 increasing with all

other da = 0). Because the stiffness matrix, [S], in Eq. 10 is diagonal, the

corresponding diagonal compliance matrix is [C] = [S] - , with each compliance

being the reciprocal of the corresponding diagonal stiffness term. That is, . -

Ciiii = I/Siiii and Cijij = I/Sijij, and (del = [C] {do}.

In this simple cubic array, and again for the case of isotropic loading,

N =ii ojj Okk= Oo; for P- and S-waves propagating along principal axis i of

the array (and, for the S-wave, polarized parallel to principal axis j), the

wave propagation velocities VP and Vs are proportional to (a0)1/6, and thus,
p o

the corresponding constrained and shear moduli, D = pVp = da4i/dFi and,

2 f3
G 0Vs doij/dyi j , are both proportional to (o)0. As discussed in

Section 4, a similar dependence of modulus on (0o)0 "33 is also predicted for

other regular arrays, while laboratory measurements on regular arrays and .

=. • % * % " % *** , . -... o % .. % " . * , ° .• - o. . ." °. .• . % % " . °. . ' . * . ' . ". °°- . . ** "° A .-
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soils indicate that Gmax a(ao)0 "5 .

For this same case of isotropic loading and for a cubic array of quartz

spheres, and if the array is loaded in pure shear, daij = daji, then a thres-

hold shear strain, Yt =4.5 x 10- 3. (0o)2/3 is predicted (see Appendix B).

This expression was obtained using the properties of quartz listed in Table 3

with ao in psi and "t in inches/inch, at which gross sliding occurs at con-

tacts i and j, and there is a tendency for a change in the geometric arrange-

ment of the spheres. This predicted relation between yt and 0 o for a sc array

" "d of quartz spheres is plotted in Fig. 21 while Fig. 22 shows the detailed shear

stress-strain plots up to the threshold (failure). In the range of practical

interest for soils, 500 psf < a < 2000 psf, the expression gives yt = 10-4% =

10-2%, which agrees very well with the measured Yt in sands as discussed in

Section 2. Expressions for the secant modulus reduction, G/Gmax, and for the

*r damping ratio of the array, versus strain increment y = dyij were also ob-

tained for a cubic array of quartz spheres (Dobry et al., 1982), and were com-

pared with actual measurements in sands, with good agreement. The correspond-

* L, ing comparison for G/Gmax versus y is reproduced in Fig. 18 for an assumed

Yt 1.5 x 10-2%.

- The more general case of anisotropic loading of the cubic array, with

(Y11 122 * 033, is very interesting, as this model crudely simulates the

.' laboratory measurements of Vp and Vs on anisotropically loaded sands discussed

in Section 2. For a P-wave propagating parallel to the i-axis of the array,

the predicted expressions for D = daii/deii and Vp are:

2 2/3 1/3
D = [(3) 1/3/2[Es/(1-Vs) ](oii) ,

fg (14)

VP (D/p)I/2 ,

41N_ p.;

.- . . .. . . . . . . . . . . . . . . . . .
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where Es, vs = elastic constants of the spheres. Therefore, both D and Vp are

functions only of the normal stress aii in the direction of propagation, and

do not depend on the other two array stresses ajj and Okk"

For an S-wave propagating parallel to the i-axis of the anisotropically

loaded array and with motions polarized parallel to the j-axis of the array,

the corresponding expressions for Gmax daij/dyi j and V. are:

2 1/3 2/3 1/3 1/3
[3(1-vs)I (Es) Oli 1j5

Gmax (2-vs)(1+v s ) 1/3 1/3 (15)
. ¢ il + ajj..

s (Gmax/P)1""

Gmax and V s are functions only of the normal stresses in the direction of

propagation (Oil) and polarization (ojj), and do not depend on the third, out

of plane array stress Okk. Furthermore, as Eqs. 15 are symmetric with respect

to oai and ajj, the values of Vs and Gmax do not change if the directions of

propagation and polarization are interchanged.

These conclusions for the simple cubic array, that V depends only on aa,
p

and Vs depends only on oii and ojj, are identical to the experimental findings

. .. of Roesler, Knox et al., Kopperman et al., and Yu and Richart on anisotropi-

cally loaded sands, previously discussed in Section 2. The symmetry of oil and

-jj in Eq. 15 is also present as a symmetry of Oa and ab in empirical Equation

4, obtained by Knox et al. from their sand measurements.

' Of course, Eqs. 14 and 15 cannot be used directly for quantitative pre-

dictions in sands, as they give D a co0/3 and Gmax a o0I/3 for the isotropic

case, while D and Gmax ct(ao)/2 in actual sands. It is interesting to modify

,' F Eq. 15 to make it consistent with this empirical fact, by replacing oij / 3,-

1 1/3 by 1liI/2 1/2"
ojj"by 'i , ojj and then comparing measurements and predictions. The

* - . .-
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" new equation is Gmax = MOii0•5ojjO.5/ (0 ii0.+ojj

0 •5), where M constant. It N 7

is useful to specialize this expression for the biaxial case, oij = al = av,

ojj = akk = 033 = Oh, to be able to compare it with the empirical Eq. 6 ob-

tained by Yu and Richart for sand. If K = oii/o jj = 011/033, the new equation

Gma x  NOV0"25Oh 0 2 5 [2K 0"2 5/(l+K 0 "5 )], where N = 0.5M. It is conven- -"
ient to define the normalized parameter G = w e025h0

,max/ ev =h wher

for K = 1. The theoretical expression G = 2KO 2 5 /(1+K 0 -5 ) has been plotted in

Fig. 19. The corresponding empirical expression G = 1-0.18 Kn2 , obtained from

Eq. 6, has also been superimposed on Fig. 19 for typical values Kmax = 3 and 4.

The trends of the predicted and measured curves are the same in Fig. 19, with

the laboratory results showing a somewhat faster decrease in G as K. increases.

- The fact that the crude particulate model used here is capable of predic-

ting the lack of influence of the two stresses perpendicular to propagation on

Vp (Eq. 14), and of the out-of-plane stress on Vs and Gmax (Eq. 15), as well

as the general trend of the relationship between Gmax and the in-plane stresses

(Fig. 19), is extremely encouraging. The main advantage of the cubic array

used here is its simplicity, but of course this model is still far from repre-

'senting real sand. One deficiency (which it shares with other regular arrays),

is that in the general case the array itself is inherently anisotropic even

when isotropically loaded (crystal-type behavior); that is, Gmax and other

- elastic" stress-strain parameters are somewhat different for shear stresses

- "corresponding to axes which are different from the structural axes (axes of

symmetry of the array 1, 2, 3 selected in Fig. 17). However, when the material

*: .of the spheres has vs = 0, the array is isotropic when isotropically loaded.

Also, the array locks when a "triaxial" test is conducted on it along any of .,-'

Sits structural axes, instead of yielding and eventually failing in shear as It

happens with actual granular materials.

- . .- 4. *-- 4* **** 4'. C ,,P.'.* * * -. ** * - .-. . . . *
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* 5.2 Body Centered Cubic Array (bcc)

The body centered cubic array, sketched in Fig. 15, was the next regular

array studied. It is also represented by one sphere, and the relations between

,: ~stress and contact forces can be easily determined for one uniform stress field

of interest: isotropic loading followed by small stress increments. The coor-

-. dination number (number of contacts/sphere) is now eight instead of six for the

simple cubic array, and, thus, the computations are somewhat more involved. A

procedure analogous to that used for analyzing the simple cubic array can be

followed, except that it is now easier to work directly with the compliance

matrix, CijkZ, [C] = [S] -1 , instead of the stiffness matrix [S] used before in

C Eq. 10.

For the case of isotropic loading, followed by small stress increments,

[C] has the following form:

d~ll C11 1 1  C 1 12 2 C 1 1 3 3  0 0 0 da 11

dE2 2  C2 2 11  C2 22 2 C2 2 33  0 0 0 d02 2

ds3 3  C3 3 1 1  C3 32 2 C3 3 33  0 0 0 do 3 3 (16)

d:12 0 0 0 C12 12  0 0 do1 2

" de1 3  0 0 0 0 C13 13  0 do 1 3

ds23 0 0 0 0 0 C2 3 2 3  do2 3
L- J zb

• ... where

__2 __ _ , 2/3 2-vs___
Cll1 = C2 2 22 = C3333 = L(l-s +

(. . G5 s2o) (l-vs) 1/3

,., , (17) .""
' . _.>.

_%%

- (17)!



C12 C13 C22 33 = *1*[2(1-v
313  2 -vs

(4,f3 Gs2 0o)1/3  (1-vs)1/3

'S.. 
(18)

C22 C334* 1 * .s2/3 1 2-vs
=z V=- 4 - -(l-vs k

(19)

Notice that, unlike Eq. 10 for the sc array, the compliance matrix [C] in Eq. 16

is not diagonal. However, it becomes diagonal and it corresponds to an

* isotropic elastic medium with v= 0, if vs= 0 similarly to that found for the sc

in Section 5.1. For an initial cross-anisotropic or biaxial loading, a3 = o +

a.and al = a3= ao followed byarbitrary, small stress increments ,the form 0

7 ~ ~of [C] is still that of Eq. 16, and the compliances in Eq. 16 are:1-%

-. .~ 2 +J5 0  1 ja -/ [(v)2/3 +2

+ 
2 -vs 

(20)

I- (1-v) 1 3  '

1/3 -1/3

C1122 =C 1 133  C 2233 [I +2 1( * 1% r2

V3. GS20o

2-vs (21)

-2(1-vs

* See footnote, Appendix A.3.

* f' 5'
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-; ! 1 , 1 1/3 1 Oa -1/3--~~ L * I*(- 2/ 3 +

C1212 = C1 3 1 3 = C2 3 2 3  3 * + (IV) +

3/7 4VT Gs2o 3 o

2:_vs (22)

' , (l-V s) I/3

As it can be seen in the above equations 17-22, Vs and Vp are again propor-

tional to (ao)l/6 for the body centered cubic array, since the corresponding

moduli are proportional to (ao)/3; this is a characteristic common to all

* ,., regular cubic arrays (Duffy and Mindlin, 1957, Duffy, 1959, Makhlouf and

Stewart, 1967). However, again it is possible to modify the exponents empiri-

,: . cally, and (ao)I/3 can be replaced by (0 0 )I/2 when measurements and predictions

- .are compared.

. •Threshold strain calculations were performed for this body-centered array

for the case of triaxial loading, starting from an isotropic pressure ao, for

which the array yields and fails (as the array tends to lock under pure shear

loading). Again, the threshold strain, yt, obtained for the array was a func-

tion of the confining pressure, (ao)2/3 , and for an array of quartz spheres

(using properties for quartz in Table 3), yt = 3.44 x 10- 3 ao2 /3 , with ao in

psi and yt in inches/inch. This gives slightly lower values of yt than ob-

tained from the simple cubic array of quartz spheres in Section 5.1, Yt

4.53 x i 0023 The plots for these two expressions of Yt are compared in :
Fig. 21, while Fig. 23a) presents detailed axial stress-strain curves up to the

.J threshold (failure). For the usual range of values of confining pressure for

. soils, both of them agree well with t 10-2% experimentally observed in

~* sands.

" The body centered cubic array also has some deficiencies when compared to

the behavior of actual sands. First, it remains isotropic even when loaded

under anisotropic loads, as shown in Appendix A. Second, in this anisotropic
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loading case the wave propagation velocities are not proportional to the

product of the principal stresses in the directions of propagation and

polarization (as measured in sands), but rather they are proportional to the

,.. mean effective stress, as can be verified from Eqs. 20-22. Finally, this

array locks under pure shear loading, and in fact it locks under a number of

different shear loading paths depending upon their orientations and initial

stress state. However, the bcc array adds to our understanding of the general

problem, as it is a medium dense (e = 0.47) array, located within the range

between the densest face centered cubic array (e = 0.35) and the loosest

simple cubic array (e = 0.91).

5.3 Face Centered Cubic Array (fcc)

* . The Face Centered Cubic Array sketched in Fig. 16 is one of the two

densest arrays, and it has been investigated by several researchers (Duffy

and Mindlin 1957, Ko and Scott 1969, Hendron 1963). The differential stress-

.-. " strain relationship for this medium was derived by Duffy and Mindlin (1957).

" The array has 12 contacts per sphere, and unfortunately it is statically nde-

terminate for most loading situations; as a consequence, closed form solutio1s

~. ?.: are available only for the case of isotropic confining pressure. In the case

' " of transversely isotropic loading a qualitative solution does exist, but the

compliances at the contacts have not yet been evaluated. Computation of these

* compliances is a formidable task due to the indeterminacy of the problem and

the variation of the forces from contact to contact. "

The incremental constitutive law under isotropic confining pressure was

used by Duffy and Mindlin (1957) to compare the theoretical and experimental

. • rod wave velocities through a bar composed of face centered cubic arrays of

spheres (Fig. 13).

-
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For the case of isotropic loading oai= 0o, followed by small stress

increments, doii, doij, the stiffness matrix has the form shown below:

doll S11 11  S1 12 2  S1133 0 0 0 dell .,

do22  S22 1 1  S2 22 2  S2233 0 0 0 dc2 2

* - do33  S3311 S3 3 22  S3333 0 0 0 dE3 3  (23)

"a 12 0 0 0 S1 2 12  0 0 de1 2

do1 3  0 0 0 0 S1313 0 dc13

do2 3  0 0 0 0 0 S2 3 23  dE2 3

~.1
[ 2 1/3

2 = 2 [3Gs 0 o 4-3v s  (25= * -- (24). '

2(1-vs)
2

,%.4

2 1/33G-s O0 Vs  ,

S1122 S1133 = S2233 = [ _ ] * 2 (25)
2 (l-vs )2

" "# S 1 2 1 2  = S 1 3 1 3 = 2 3 2 3 = - ]* 2 v s ) ( 2 6 ) [ "' .

• v . .2 ( 1 -v s ) 2 s , '

Similar to that discussed previously for Eq. 16 and the bcc array, the stiff-

ness matrix [S] in Eq. 23 becomes isotropic and diagonal only if vs = 0. In

that case, all diagonal terms are identical and equal to:

7.-2

1/3
213Gs (27)

2. 2

.A

and the Poisson's ratio of the array is v 0. 7
... '.,<-

4 :''
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If the face centered cubic array is consolidated under a transversely isotropic

state of stress with oll 0 o + 0 a, 022 = 033 = Go, and 012 = 013 = 023 = 0,

the situation becomes more complicated, since in the case of a non isotropic -

loading the forces vary from contact to contact and each compliance is differ-

ent. To obtain a stress-strain relation for an anisotropic loading path, the

derivation must be performed anew, distinguishing between contacts with

different loading histories.

The differential stress strain law for this case appears in great detail 2r..

in the original paper by Duffy and Mindlin (1957); it is identical in form to

Eq. 23 , except that now the expressions for SijkX are not known. Thurston

(1958) extended the results of Duffy and Mindlin to a set of 18 equations and

18 unknowns.

The fcc array was subjected analytically to the conditions of a triaxial

test by Brauns (1968) and Brauns and Leussink (1970), who derived theoretical

expressions between stress and strain at finite levels for an array of glass

spheres (Fig. 23b). These expressions were later compared to experimental data

L obtained in triaxial tests on regular fcc packings of glass and steel spheres

(see Appendix B3).

* -* Thurston and Deresiewicz (1959) derived expressions for the uniaxial conr-

pression of an fcc array when applied concurrently with a related isotropic

"- pressure. Again, the theoretical results were compared with experimental

* *'. results obtained through compression of bars of steel bearing spheres arranged

in fcc array, with good agreement.

5.4 Cubical-Tetrahedral (ct) and Tetragonal-Sphenoidal (ts) Arrays

_ The elastic constants relating stress to strain increments for the Cubical

-" Tetrahedral and Tetragonal Sphenoidal arrays that have been consolidated

°'

-- -.' , ,'1,_ i -".o_". ' ...- .b .,, ',' >./.1., . >.?.'.,>.0
. . , '

_,-, C 5'5 , '., ". .,,. b ,i "- ,-i ',', '
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4isotropically were derived by Makhlouf and Stewart (1967). The procedure for

determining those constants is the same as in the other arrays described in

detail by Duffy and Mindlin (1957).

The corresponding constitutive law for the Cubical Tetrahedral array has

the same form as Eq. 23, but now

2 1/3
'~ . 5ii1 =~222 =3 

1/3 (1+3k) G 3 GCa(28
SIM S2222 4k 01

2 ( .,2.
sV

S 1 4  * L G2 1/3:"~ ~ 1/3 3 soo (9): ,
2 2 GIo0 (29

ss..

31/3 (2-k) , 2 1/3 (30)
3 41k) G a0S1122 4k 2 I1-v2

3

4. 2 1/3

S1212 (t+k) 31/3*2* 13 Gs 0  (31)
L 5k 2(1-V2 )

132 1/3 4
2*31/ *[3 Gsca0 32S13 13  2323 5 (32)

5k5k 2

2 - v.

where k $22s k [ (33) ,

- wher k 2(1-vs) .

As we can see from the above equations, the Cubical-Tetrahedral array differs

from the simple cubic, the body centered cubic and the force centered cubic

4 arrays in that it does not exhibit cubic anisotropy, but rather transverse

or hexagonal anisotropy, as is also the case of the Hexagonal Close Packed

4,-

* .- ..
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-:array (Duffy, 1959) and of the Tetragonal-Sphenoidal Array.

The constitutive law for the Tetragonal-Sphenoidal array appears also in

Makhlouf and Stewart (1967). However, not enough detail is provided in this

reference for a full understanding of the results, which are quite complex,

as the representative unit prism is not symmetric. Unfortunately, the
.,.

original reference (Makhlouf, 1963) could not be found by the authors*, thus

preventing a better understanding of this array.

5.5 Comparison of Different Cubic Arrays

The analytical results on the three regular cubic arrays discussed in

Sections 5.1-5.2-5.3: simple cubic, body centered cubic and face centered

a,.
cubic, were compared as part of the current research. This was done to gain

further insight into the behavior of granular media, and as a necessary inter-

* mediate step toward the investigation of more elaborated and realistic partic-

ulate models.

All these arrays generally exhibit cubic anisotropy (crystal-type

behavior) under an isotropic confining pressure ao. In the three arrays, it

. ~ was found that the necessary and sufficient condition for the array to become

isotropic under a. is for the Poisson's ratio of the spheres, vs, to be equal

*The differential constitutive laws for the cubical-tetrahedral and the tetra-

gonal-sphenoidal arrays are either not applicable to our research or they are
* -erroneous. As one can see from Eqs. 28-31, contrary to general belief (Duffy

1959), the cubical tetrahedral array does not become isotropic under isotropic
loading. This is a serious deficiency vis-a-vis our research, as sands are
isotropic under isotropic load. Consequently, the cubical tetrahedral array
will not be used here. As for the tetrogonal sphenoidal array, the results

- are not complete, and since the representative volume element of this array is -:
not symmetric, completion of the stress strain relation in Makhlouf and
Stewart (1967) appears to be a major task. The inexistence of the primary
source for this array, Makhlouf (1963), made it impossible for the authors to
clarify the above aspects; therefore no results will be used here for the

v, ." cubical-tetrahedral and tetragonal-sphenoidal array.

.4
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to to zero. If vs = 0, the incremental stiffness (and compliance) matrix for the

three arrays is diagonal. Although the Poisson's Ratio of quartz is vs - 0.15,

(Table 3), is certainly different from zero, it is low enough to make this

KVs = 0 assumption", needed for isotropy, a reasonable one for quartz sands,

at least as a first approximation. If vs = 0 is assumed, the Poisson's Ratio

of the array is also computed to be v = 0 for the same three arrays. It must

* be note that for the range 0 < vs < 0.5, values up to v = 0.13 are computed

for the same arrays (see Fig. 20). Therefore, the fact that a value v = 0

results for the array as soon as s= 0 is assumed does not seem to be so far

. off either. It is interesting to note that measurements of Vp and Vs by

Stokoe and his coworkers on an actual sand consolidated isotropically also

.*. provided a similarly low value of v = 0.10 (Knox et al. 1982, Kopperman et-p

al. 1982, Lee 1985). In any case, even with vs # 0, the cubic anisotropy of

r these expressions for v arrays is not pronounced; the error resulting from

"' computing the moduli between the extreme values of vs is smaller than 3.3%

(Duffy, 1959).

The above three cubic arrays starting from an isotropic o state, were

loaded statically in triaxial compression or pure shear up to failure, that is

up to gross sliding, and computations were performed and are displayed here for

their stress-strain curves and threshold/failure strains (Figs. 21-23). A
S:

, '.* graph of obliquity, G22/o 0 at failure versus the intergranular friction coef-

ficient between spheres, f, was also computed and is plotted in Fig. 24. The

curves obtained for the arrays in this figure were also compared to the

S.' obliquity obtained assuming the Mohr-Coulomb Failure law:

- 2 1+sin_ 2
G2 _-sin tan (45 + 1) with tan f

e. J A. -
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To be able to fail the simple cubic array in triaxial compression, this medium

was compressed by a force parallel to one of the face diagonals of the unit

ON volume of the array, that is along a [110] direction (Deresiewicz, 1959).

.'j The same cubic arrays also give excellent results when predicting the in-

fluence of anisotropic consolidation on shear wave velocity; this is shown in

Fig. 25 by a plot of normalized shear wave velocity vs stress ratio K = 022/ o.

In this plot, Vs(K) and Vs(1) are the values of the shear wave velocity, Vs,

computed for the anisotropic case (K) and for the isotropic loading condition

2 (K1), respectively, for direction of propagation and polarization parallel or
perpedicular to 022. The same plot includes data measured by Stokoe et al.

' A (1985) and Lee (1985) on dry sand in the large cubic testing facility at the

University of Texas, with excellent agreement between the analytical

predictions and experimental data.
"' .

The shear modulus at very small strains, Gmax, computed for these same

three cubic arrays under a given isotropic stress, ao, is plotted in Fig. 26

as a function of the coordination number ( number of contacts/sphere). As

expected, the higher the coordination number, the stiffer the array, with es-

sentially a linear relation between the two parameters; it is interesting that

for a given co the straight lines in Fig. 26 extrapolate down to zero, suggest-

ing that Gmax is essentially proportional to the coordination number (a similar

J -. plot appears in Yanagisawa, 1983). Therefore, adding coitacts to the spheres

has the same effect on the stiffness of the arrays as increasing the numer of

springs in a system of equal, parallel, elastic springs. A derived plot is the

graph between the shear wave velocity, Vs = (Gmax/P)I/2 versus void ratio and

isotropic pressure ao (Fig. 27a) for the same three arrays. This last figure

is especially interesting, as the trend observed in actual sands is very

similar (compare analytical curves with measured data in sands in Fig. 27b),

_ -,..__ .. . . .-. ..".. ? . ... *, .>' ... . .. :/.> .,. .. .. "".", :. .:-.":'&...-.K"..-.' '.-.
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except that the absolute values of V. in the real soils are much smaller, by a

factor of two or three. For example, for e = 0.47, corresponding to the bcc

array, and ao = 30 psi = 4,320 psf, Vs = 1,800 fps is predicted by the analyti-

cal model in Fig. 27a while Vs  1,100 fps has been measured in rounded

grained sands. Therefore, Figs. 26 and 27 strongly suggest that the dependency .-

of Gmax and Vs on void ratio observed in real soils is explained mainly by the

increase in the number of contacts as the void ratio decreases.

Even though the above results are encouraging, the regular arrays are

still very crude analytical models of actual granular soils, and results such

as shown in Fig. 27a are not easy to interpolate to intermediate void ratios.

A significant improved model is discussed in the following section.

I..
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'Section 6

A MODEL OF GRANULAR SOIL OF ARBITRARY VOID RATIO

Smith et al. (1929) found experimentally that a random arrangement of

equal spheres, after enough shaking and tapping has been applied to it, seems

to be composed of regular arrays, representing dense and loose clusters

distributed within the random grandular medium. The measurements showed that

- all spheres had between 6 and 12 contacts per sphere, which corresponds exactly
I ~to the theoretical range for regular arrays.,---

Additional experimental work by Bernal and Mason (1960), Bernal et al.

(1964), Scott (1960), Scott et al. (1964), Davis (1974) and Shahinpoor and

Shahrpass (1982), Finney (1983), Figs. 28 and 29, has confirmed that 2-D and

3-D random assemblages of equal spheres tend to crystalize. Consequently, at

the present time, it is generally accepted that an assemblage of equal spheres

can be modelled by a combination of regular arrays, Finney (1983), Backman et

:'" al. (1983).: :

al.In this section, a model of granular soil is proposed which consists of

clusters of the three cubic arrays discussed in Section 5.5, with the addi-

V tional assumption that the spheres have v. 0. In this model, the three cubic

arrays, having different void ratios and inherent stiffnesses, occur in pro-

portions such as to give the desired macroscopic void ratio of the "soil". In

a'a. Section 6.3, the relation between Gmax, void ratio and ao applied to the "soil"

•, 2 is calculated using the self consistent method, and the results are compared

with Gmax measured in actual sands.

6.1 The Self Consistent Method "

One of the most commonly used procedure for describing the behavior of

macroscopically isotropic composite elastic media is the "Self Consistent

39
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, Scheme".

This "Self Consistent Scheme" was first devised by Hershey (1954) and

Kroner (1958) as a means to model the behavior of isotropic and anisotropic

V. -polycrystalline materials. Such materials are just one phase media, but be-

cause of the random or partially random orientation of the crystals. They are

. .heterogeneous, the elastic properties vary with position within the medium and

discontinuities in properties exist across some crystal interfaces.

In these original applications of the method to polycrystalllne aggregates,

a single anisotropic crystal was viewed as a spherical or ellipsoidal inclusion

within an infinite medium; this infinite medium had the (still unknown) iso-

tropic elastic properties of the aggregate. Then the medium, with the inclu-

.- . sion in it, was subjected to a uniform stress or strain field applied at large

distances from the inclusion. Next, the orientation average of the stress or

strain in the Inclusion was assumed to be equal to ("consistent with") the

*' corresponding applied value of stress or strain. Thus the "self-consistent"

name of the method. This formulation provided enough equations to solve for

the isotropic effective properties of the medium (Christensen, 1979).

Improvement of this self consistent scheme and its extension to multiphase

media are due to Hill (1965) and Budiansky (1965), who developed the method to

be used here. This improved method represents an approximate analysis for the

- prediction of the overall (macroscopic) elastic moduli of a multlphase medium

composed of a coherent mixture of several isotropic, linearly elastic materials

or phases. The medium is assumed to consist of contiguous, irregular zone con-

tinuing these constituent materials, and the shapes of these zones are assumed

not to deviate much from spherical. The spatial distribution of the phases is

-A assumed to be such that the composite medium is macroscopically (i.e. at a

*" scale much larger than the dimensions of the zones), both homogeneous and
I-. , ?
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isotropic. Now, if an N-phase medium of total volume V is defined, such that

the aggregate volume of all zones containing the ith phase is Vi, the volume

concentration is ci = Vi/V and ci is also equal to the probability that any

arbitrary point within the medium is located within a zone of the ith material.

It should be noted that in the limiting case of very small concentrations, cl,

c2, .CN-, the first N-I phases will tend to appear as isolated inclusions

in a matrix consisting of the Nth phase.

In order to obtain to effective overall (macroscopic) shear, G* and bulk,

K*, moduli of the medium, a uniform stress field is applied at its boundaries. -

Then, the stress and strain field, in each of the phases is evaluated as ex-

plained in the next paragraph. Once the fields are determined for all mater-

ials, the effective moduli, G* and K*, can be calculated by equating the strain

energies of the macroscopic medium and of the phases. Again, the problem

17 reduces to a number of coupled equations for K* and G*, which are in terms of

the properties of the individual materials and of their volume concentrations

(Budiansky, 1965). This method has been severely critized for taking enormous

liberties with the geometrical arrangement of the phases (Christensen, 1979).

To calculate the elastic field in each material, the geometry of the different

Szones containing the phase is successively rearranged to view the phase as a

single inclusion. However, the method is relatively simple and in many in-

stances, when used with caution, gives very good results. Furthermore, it has

been proven by Hill (1965) that this "Self Consistent Method" yields results

for G* and K* which always lie between the Voigt and Reuss bounds, that is, the

. .spatial average of the moduli of the phases (Voigt bound, springs-in-parallel)

-. and of the reciprocal of the moduli, or compliances of the phases (Reuss bound,

springs-in-sands).

The evaluation of the stress and strain fields in each of the phases is

I-
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performed for the isotropic case by the solution of the problem of the fields

of an ellipsoidal elastic inclusion (Eshelby, 1957). It was shown by Eshelby

that the fields inside an ellipsoidal isotropic elastic inclusion embedded in

an isotropic elastic medium is uniform; this is an extremely important

conclusion as it eliminates the need for averaging the fields within the

inclusion phase and simplifies enormously the formulation. Later, it was shown

that the stress and strain fields inside an orthotropic inclusion embedded in

an orthotropic medium are also uniform, as long as the cross section of the

inclusion is quadratic (Kinoshita and Mura, 1971).

The averaging of the shear moduli of all phases by a strain energy balance

between -he medium and the inclusions yields:

~I N-1 Gi Yi, --%

* + N ci (34)
GN i=1 GN

N-I, K v.

K* K i=1 KN Go

where G*, K* are the desired macroscopic moduli; Ki, Gi (i - 1,2,...N) are the

moduli of the ith phase, ci = Vi/V is the volume concentration, and yi, ev.

* <are the values of the average shear strain and volumetric strain respectively,

inside the phase. The parameters T* and a* are the shear stress and isotropic
% . 0

., pressure applied at the boundary of the medium.

The Elshelby (1957) solution gives

Yi = * W (36)G*+ *(Gi-G* '

"- o 0$
C _ a (3 7 )Lvi  K*+a* (KiK*)

4 2.
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. where a ,* are components of the Eshelby S-tensor; for the case of spherical

inclusions are:

,* 1+(*,,'. = 3(1- *) (38)

* _, 2 (4-5v*)., .'15(-* (39)4-ob

15 (~*
4,, .4

,w ' . *-

where v is the macroscopic Poisson's ratio of the medium:

A 2G
V = (40)' -" 6K K+2G* -

By "smearing out", that is, by replacing the matrix surrounding each inclusion

[(phase) by the desired resultant macroscopic medium, equations 32 and 33

-". reduce to:

r- -

Nc

. =1 (42)i=1 Ci
4 ~1+a~ 1

K

.-. _ .4..

which are symmetrical for the various phases. Therefore, Budiansky (1965) has

suggested to use equations 41 and 42 for arbitrary concentrations of the

4- %constituents of the composite medium as described previously. Furthermore,

Budiansky (1965) simplified equations 36 and 37 to:

T1 (43)
* Gi

1+ L - 1)
~ G

A ---.
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GocK [ " (44)

A comparison of Eq. 43 with results obtained through statistical finite

element methods, suggests that the above equations do indeed model the

continuum described previously, including the assumption that the stress and

strain fields of the phases are approximately independent of location (Fig. 30,

see Petrakis, 1983).

Finally, Equations 38-42 have to be solved simultaneously to yield the

desired values of the macroscopic elastic moduli, G*, K*. These resultant

macroscopic moduli are estimates of the overall elastic constants of the

multiphase medium, and, as mentioned before, they invariably lie between the

" Reuss and Voigt bounds. Other solutions may provide narrower bounds for the

actual solution (Hashin and Shtrikman, 1963); however, the Self Consistent

solution, in certain cases, also falls between these narrower bounds, thus

shwoing its capability for providing accurate results (Hill 1965).

6.2 The Model

The Self Consistent Method is applied here to evaluate the elastic

- constants of a random assemblage of equal, rough elastic spheres that has been

consolidated isotropically and has a prescribed mean void ratio e. The spheres

* ." are assigned the elastic properties of quartz, and the assemblage is assumed

to be composed of random zones, with each zone consisting of a large number of

spheres arranged in either of three regular cubic arrays.

* Recently, Shahinpoor (1981) modelled a random 2-D array of equal steel

spheres as a combination of Voronoi cells, derived an expression for the

probability density function of the void ratio, p(e), and checked experimen-

tally this analytical p(e) by means of an optical scanning technique, Fig. 28

•. - . . . o . -- . . . . . °.. . . . - . . . .° . r . .- - - - .- °- - - - - - oo - °. . . . • - ,
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(see also Shahinpoor and Shahrpass, 1982). The expression for p(e) is:

= X exp(-Xe)

i ep(-) e) (45)

pe) = exp(_Xemin)-exp(_Xemax)

where e 1 + emin exp(-Xemin)-emax exp(-Xemax) (46)
X exp(-Xemin)-exp(-Xemax)

X is obtained from the mean void ratio, e, of the distribution p(e). As men-

tioned before, it is reasonable to model a uniform, rounded-grained sand as a

random combination of zones corresponding to regular cubic arrays, and this

was the approach taken in this work. The sand medium is assumed to be com-

posed of regular arrays in the fashion of Figs. 28 and 29, where each randomly

* .oriented Voronoi polyhedron is one of these zones, and contains a regular ar-

ray with many spheres. A cross section of this 3-D medium could be visualized

approximately by the actual photograph of the 2-D medium in Fig. 28b; in this,
-

C. -. the black spots are spheres and the white are voids, and zones of regular

packings can be clearly observed. The macroscopic moduli of the whole medium

" .will be determined from the properties of these zones through the self
%"V

consistent scheme.

* " As a first step, the probability density function of the void ratio, p(e),

Eq. 45, was transformed to the probability density function of the porosity,

C-. p(n), with the basic equation (Benjamin and Cornell, 1970):

p(n) =  p(e)

as the mean of the porosity distribution, n, coincides with the macroscopic

(measured) porosity of the "soil", unlike the mean void ratio e, which is not

identical to the macroscopic void ratio (Petrakis, 1983).
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Then, the probability density function of the porosity, p(n), was dis-

cretized into three segments of influence, corresponding respectively to the

porosities of the three regular cubic arrays (see Fig. 31): sc (n = 0.48),

* bcc (n = 0.32) and fcc (n - 0.26). The values of nmin and nmax used for all %

calculations were those of the sc and fcc arrays.

*. / For example, for a prescribed macroscopic porosity n = 0.35 correspond- • *

ing to a mean void ratio e = 0.54, the calculation illustrated in Fig. 31

allowed determining the following three volume concentrations, ci:

-" Array ni ci

. sc 0.48 0.1934
bcc 0.32 0.5921.*

fcc 0.26 0.2143

The medium with these three phases was then subjected to an isotropic

boundary confining pressure, a*, and subsequently subjected to small boundary
0

stress increments daij , from which the corresponding elastic, very small

strain increments at the boundaries, and the mean cubic medium moduli K and

S"G* were evaluated.

-. If we now assume that the phases are quadratic (elliptical or circular)

in cross section we can apply the Self Consistent method. The assumption that

the "zones" are quadratic in cross-section is important, since if the

"* , resulting stress and strain fields are uniform (see Section 6.1) within each

"zone", the "zone" can be replaced by the representative cube of each cubic

array (Figs. 15-17) and the corresponding constitutive laws are given by Eqs.

10, 16 and 23. Since in turn these relations depend upon the pressure acting

. on each inclusion or phase, the value of the stress field at the boundary of

each of these phases and inside it can be readily obtained from Eshelby's

4 "-4
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(1957), and Budiansky's (1965) results:

-1 K0K1
K1 0 Ki (47)

fr: 1 + -K -
K

where the value of a* depends upon the shape of the zone, (Eshelby, 1957), P

which here has been assumed to be spherical for simplicity. Note that this

-i
value of ao is independent of the location of the zone, and is thus the same

for all zones containing the same regular cubic array or phase.

Equation 47 is then replaced into Eqs. 10, 16 and and the problem

finally reduces to the solution of the following equations for the three

phases:

S oKi 1,
Ko K ; i =1,2,3 (48)

1+ a* (-; - 1J
K

A i= 1.0 (49)

1 + (* - -1) .

G

3 Ci

a * 1 )= 1.0 
(50)

i=1 KiK

S * -(51)3 (1 -v * ) K "

(4- (52)
15 (I-V
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(3K*-2G* (53),- (53)* "*
6K *+2G*

where K= Ki(o), Gi = Gi(a) for the three phases are obtained with Eqs.

10, 16 and 23 for i = 1, 2, 3, corresponding, respectively, to the simple

cubic, body centered cubic and face centered cubic regular arrays.

6.3 Application to Quartz Sand

The proposed model was evaluated using as input the elastic parameters of

quartz for the individual spheres, which are E. = 11.0 x 106 psi and vs = 0.15

(White, 1965, Ko & Scott, 1967, Lambe and Whitman, 1969, see Table 3), and for .-'

a wide range of isotropic confining pressures. The values of the computed"Sk

' .. shear modulus G are plotted on solid lines in Figs. 32 and 33 versus con-
• ,"- -"

fining pressure co  a° for e = 0.54 and e 0.46, respectively. The values
0

-r of the bulk modulus, K*, were also computed, and Fig. 34 contains a plot of

.. "- confining pressure versus volumetric strain predicted by the model fore =

0.54, where the volumetric strain was derived from this computed bulk modulus,

- 0*
. Ev = o/K

• ". As mentioned before in connection with Fig. 27, regular arrays are much "
stiffer, up to 3.5 times stiffer, than actual uniform, rounded sands, and this

constitutes a serious defficiency of the model. However, Drnevich and Richart

(1970) have suceeded in increasing significantly the shear stiffness of dry,

rounded, uniform Ottawa quartz sand by applying millions of cycles of a shear

strain slightly greater than the threshold strain in a resonant column device.

% Figures 32 and 33 also include as data points the resonant column experi-

* mental results obtained by Drenvich and Richart, for macroscopic void ratios,
e = 0.54 and e = 0.46, respectively. The lower dotted line in each figure cor-

5.' responds to virgin or uncycled sand as predicted by the Hardin and Black (1966)

5"'.

** %%"* % * ,*' ***.:"**** ,* **..
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correlation, which is essentially identical to the Hardin and Richart correla-

tion depicted in Fig. 27(b). In both figures, two trends may be clearly

observed: a) as the number of -ycles, N, increases,the test results steadily

approach the model values until, at N = 22 x 106 cycles, in Fig. 32, the agree-

ment becomes excellent; and b) the slope of the line of shear modulus vs con-

fining pressure decreases from about 1/2 in the uncycled state to about 1/3

- after, approximately, I x 106 cycles. The reason for some of the points showing

more scatter is probably because those points were cycled more than others with

the same void ratio, or because their void ratios were slightly differed.

In the above tests, the sand specimens were cycled at strains which,

- ' although larger than the threshold strain, were small enough so that no sig-

* ,nificant densification occurs, and indeed the change in measured (macroscopic)

void ratios between virgin and cycled specimens was very little or negligible;

I thus, densification is certainly not the explanation in the observed threefold

increase in the sand stiffness. Drnevich and Richart (1970) speculated in

their paper that the above behavior could be due to wearing of the contacts,

increase of the contact areas or formation of additional contacts. The authors

think that this third reason explains the phenomenom completely, as illustrated

by the comparison with the model in Figs. 32-33, and by the relation between

stiffness and number of contacts in Fig. 26. It is known that in a random

-" .* array of spheres there may be less contacts than in regular packings (see Smith

et al., 1929) and, furthermore, it is possible to have contacts which do not

transmit any load (dead contacts). By continuous cycling such as performed by

Drnevich and Richart in their tests these contacts were made load-transmitting

and new ones were formed until all or most possible contacts were created and

the stiffness of the sand coincided with that predicted by the model. It is

interesting that the creation of contacts can also be achieved by high

. . . . . . .....,-,..-- .,, -....-.-...... ..- •. ,.....,...... , ...;. V.,-. ),.... ., .- ,..... ,
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isotropic confining pressures (Duffy and Mindlin, 1958, Deresiewicz 1958, see

also Fig. 13).

The analytical model proposed herein describes exactly this: since it

assumes that the sand is a random assemblage of regular arrays of spherical

grains, it implies that the number of contacts is the maximum possible.

Furthermore, as shown by Duffy and Mindlin (1958) and Deresiewicz (1959), and

as illustrated by Fig. 13, when the number of contacts increases the pressure

dependency of the moduli tends to change from 1/2 to 1/3. All of this is

interpreted by the model, which is shown here to represent the limiting state,

in terms of number of contacts and of stiffness, that a sand can reach.

0

Figure 34 shows the confining pressure a. vs. volumetric strain, ev,

measured by Drnevich and Richart on the same Ottawa sand specimens discussed

above, for a virgin specimen and for a specimen after 1 x 106 cycles of shear

strain. Unfortunately, no data is availabli! for sand specimens cycled with

more than 1 x 106 cycles. In the figure, lines have been passed which approxi-I° , i~i
'. ~\ mately represent these experimental data. The line predicted by the model is

also plotted, and again it is clear that the cycling is increasing the bulk

modulus of the soil, thus making it approach the curve predicted by the model,

as the number of contacts increases toward the theoretical, maximum value. It

would be interesting to compare the difference between the analytical results

* and the experimental values for both moduli, K* and G* at a given cycling

*' state. The experimental values for the case of hydrostatic compression (Fig.

34) are closer to the model predicted curve than the measurements with shear

(Figs.32-33), for a comparable number of cycles. This is explained by the 5..

fact that, once the spheres have approached each other due to the cycles of

.4 shearing, an increase in o° can complete the formation of many contacts, thus
0

further increasing the stiffness of the soil.

4 -7
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- ,Section 7

CONCLUSION

A particulate mechanics (micromechanical) model has been developed for

0. describing the elastic response of assemblages of identical elastic spheres of

arbitrary macroscopic porosity, n, subjected to an arbitrary isotropic

-boundary pressure, ao . The model is based on the Mindlin-Deresiewicz theory

.of bodies in contact and takes into account the spatial variation of porosity.

The model assumes that the assemblage is composed of random clusters of

- several regular arrays of various porosities and it computes the macroscopic

moduli by means of the Self Consistent Method.

The predictions of the model, specialized for the case of quartz spheres,

were compared to measurements of shear modulus, Gmax on uniform quartz sands,

with good qualitative agreement; however, the analytical "sands" were as much

4# as 3.5 times stiffer than the actual soils. This is explained by the fact

that sands have less effective contacts per grain than theoretically predicted

" for a given porosity n. However, when the sand is prestrained by millions of

S -" shearing cycles slightly above the threshold strain, Gmax approaches the

theoretical value without changing n, as the theoretical number of contacts is

." 4 realized. Thus, the model exhibits excellent agreement with results on

heavily prestrained sand, and it also provides upper bounds for small strain

" shear and bulk moduli for all rounded uniform sands.

51
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Table 2 Feasible Regular Arrays or "Cells".'

(Shahinpoor, 1981) '.-4
Coordination No. = N = No. of Contacts per Sphere
[u,m,Z] gives No. of Contacts of Spheres with Layer
Above, Same Layer and Layer Below: N u + m + .

Young's Modulus Es = 11 x 106 psi
Poisson's Ratio Vs = 0.15

- -Coefficient of
" "f = 0.5

Intergranular Friction IN.

J ,.9, Table 3 Properties of Quartz Used in this Report

[Note that Lambe and Whitman (1969) reported a different value
Vs = 0.31 for quartz, which in turn was used for the calculations%" '4' in Dobry et al. (1982). The lower value v s = 0.15 used herein
is more realistic and was obtained from White (1964) and Ko and

" ( Scott (1967)]
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%. .- APPENDIX A -STRESS-STRAIN RELATIONS FOR A BODY CENTERED CUBIC ARRAY

Following a procedure similar to that used for the simple cubic array by

the authors and by others, incremental stress-strain relations for various

states of initial stress can be obtained for the body centered cubic array.

* N A-1 Relation Between Stress and Contact Forces

Consider first a medium composed of identical spheres, Fig. 15b, arranged

*in a body centered cubic array. Take as an element of the medium the cube

Sshown in Fig. 15a. This "elementary" cube (or representative volume), (Fig.

Al), is chosen to contain a sufficient portion of the medium to define the

arrangement. Clearly, each sphere in the medium is in contact with 8 other

~ spheres.

Increments of the force dPij act on the forces of the cube, Fig. Al, and

they are assumed to be distributed among the spheres in proportion to their

stiffness, that is to their section exposed on the faces of the cube.

J The incremental stress components are defined as follows:

Sdaij d 16RL (Al)
4 3

~ 16R 2

where -is the gross area of the face of the cube.
3

At each contact between spheres, the normal and tangential components of

the incremental force are again designated by dNij; with dNii being the normal

component and dNj being two the tangential components.

Once more, the first step in deriving the incremental stress-strain

relationships is to define the expressions for the increments in the forces at

* the contacts between the spheres in the cube, Fig. 15a, dNij in terms of the

- . increments of the applied stress daij. However, since this array is statically

.1*~k
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determinate for initial isotropic and transversely isotropic triaxial loading,

only the equilibrium conditions are sufficient for the solution of this sub-

problem. However, this case is much more involved than the simple cubic array

i and tedious calculations have to be performed. -A

Fig. A2 shows one octant of a sphere at the apex H as well as the point

.. of contact with the "central" sphere and the applied and contact forces. This .

octant of the sphere at H will be treated as the representative octant. Now

equilibrium equations have to be written for each spherical octant at every

A' apex and the contact forces will have to be solved for each case separately.

For example for apex H, (Fig. A2), the equilibrium equations are:

E Fx 0 => dN 3 + dN3 1  - dN32 + - dP11 + - dPl3 + - dP 1 2 = 0
1VT 42

C'(A2) .

0 > I , 2 , 1 1 1 :-
E Fx = 0> dN3 3 + - dN3 2 + dP22 dP1 2 +- dP32 =0

2 4 4 4

(A3)

1 1 , 1-1.

Z Fx =0=> dN3 3  dN 3 1  dN3 2 +- dP13 +- dP 3 3 + dP23 =0 r
3- V - vg 4 4 4

". .. (A4) "'

the solution of which is:

-- dN3 1 -- (dPi1 - dP3 3 + dP2 -dP23) (A5) X
- 8 dP-2 ,,

dN3 2 = -- (dP1 - 2dP 22 + dP 3 3 - dP1 2 + 2dP 13 - dP2 3) (A6)
24

%~ VT

•~ ". .,4,
'. .v .- .-.

dN3 3 = - (dPi 1 + dP22 + dP33 + 2dP1 2 + 2dP13 + 2dP2 3) (A7)
12 %

"/ * The primed symbols refer to the local coordinate system.

, -. ,
''-C,
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At this point the state of stress can be defined and the constitutive law

may be determined for each case (isotropic or cross-anisotropic triaxial

A.2 Isotropic State of Stress:

Applying increments of force along the three principal directions, dPj1 ,

d02 2, dP33 and one at a time, on top of the isotropic confining stress, an

S. inremental force-deformation relationship can be developed. For example, in

the case of application of dPlI (Fig. Al) we have:

d6 1 =-( Cn + - Ct) dPj1  (A8)
6 3

d622 + -(C1n Ct) dPli (A9)
6

d633 -(CnCO dPll (AlO)S6

where Cn, Ct are the normal and tangential Compliances at the contact.

Similarily applying dP22:

e, d6ii ( Cn - CO) dP22 (Al
6 6

JI-

d62 2 = ~ Cn + - Ct) dP22 (A 12)
6 3

d63 3 = ~Cn -- Ct) dP22 (Al13)
06 6

To determine now the relation between changes in angle and forces we have

to look at the difference between displacements (Fig. Al). For example, dPl 2
.5. being applied, we have:

633 - 33 6221 - 622
Sdy 2 3 = A E + IA D etc. (A14)

.1~abcc abcc

.4.

-. - - L4-. !h
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..

where abcc is the length of edge of the cube. Now:

633 633 E - 633 613 - 623) (A15)
f.- 33 =21-l__ 1 3 + 1 +13(+ 1

p622A- 6221 0 etc. (A16).JA D

Consequently:

I2 2yj ( Cn¢) + IC)d12 (Al7)

Evaluating the compliances

Cn 2Gsa which yields

-. _. (l~us2/3 ' '
" C n _ (A 18 ) ..

(4 V'3G s2ao)1/3 R

Similarily O".

S 2-vs 1 (A19)
6W2(1 s)1/ 3  (4 V"-Gs 2ao)1/ 3  R

in the case that vs *0

d6 (= Cn + C) dP1• "6 3.. "l

. Substituting for Cn, Ct eqns. (A18, A19) we obtain:

--q

•i.1 ( - v s ) 2 / 3  1- 21I -_ d l + -- 'v,,
4" d6 1 1  1 1dP 5  Ile

' 6 (4 NGs2 0o)1/3 R 6 (lv s)1/
3  (4 %/Gs2ao)l/ 3 R

(A20)

then:

vv'. 
-. '.-•
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%' V....'

221--(v 8)2""+ 2-u
dell 2 1 L(i-is) 2/3  doll (A21)

l 3V (4V3Gs 2
0 0 ) 1 / 3  (-Vs)1/3

4 %

2o 1/3 ..
3VT=(4V3G2 ao)

doll dell (A22)
2-vs 4J.. ~2 [ ( l- s )2 / 3 + . -

.. ( ( - s 1/3 :

i Similarily

• ".d 22 =IL-  I[2(-_s)2/3 2U
Idoll (A23)

"" 3 -(4V G 2  o) 1 3( - s)1/3 "

de33 = de22  (A24)

Also from eqns. (A17, A18) and (A19) we have that

L4 1 2-,s

, L _1 (1-vs)2 3  dol2 (A25)

'. 3VN (4V Gs2ao)I/3 4 (l- us)I/3 1

Finally, the incremental stress-strain law for the isotropic case may be

w itten as follows

I. 04

0 dell = CIII I doll + C1 12 2 d02 2 + C1 1 33 do33 1"

e d2 = C112 2 doll + C2 2 22 d02 2 + C2 23 3 do3 3
-.. •

dE33~~~~- = 13 dl tc A6
3= C 13 3 do 1 + C3 32 2 do2 2 + C33 3 3 do3 3  etc. (A26)

p..

Pd - -.-

5'."i'.
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where Cijk£ are the expressions (compliances) in the stress-strain relations, -P

as for example, in eqn. (A21), (A22). In matrix form

del C1 1 11 C1 12 2  C1 13 3  0 0 0 doll

In"dE22 C2211 C2222 C2233 0 0 0 dG22

:'L, d33 C3311 C3322 C3333 0 0 0 do33 .:.

S..-."dE12 0 0 0 C1212 0 0 dal2 ..

.• .' .

"- "del3 0 0 0 0 C33 0 do;13 "

~. , '

_ -. dE23 0 0 0 0 0 C2323 da23 .

(A27)

In order for the bcc array to be isotropic under isotropic loading the follow-

.- ~. ing condition must be satisfied:

C1212= C1 3 13 =C2323 C - C1122 (A28)

.C2211 C122 = C133= C2 2 3 3 - C3 3 1 1 = C3 3 2 2 =C122 (A29)

The above conditions are satisfied only when v. = 0; furthermore, in this

case of the bcc array, as in the sc array, C1 1 22 = 0 and the compliance matrix

is diagonal.

In this case:

• ' I1/3" "
" 2 1 .,

C1 1 1 1 = C2 2 22 = C3333 (-- _ 1A30)
,%Z . V3- 4 V3 G 2 O

Since the compliance matrix is diagonal, its inverse, the stiffness matrix is

L% easily computed by inverting each term: i.e.

4 V1



-. NL.- .. .

49

do 11  1dell.7

do 2 2 IdE22

d33 -VT (4VG 2  1/3 1 d33

2 S 00

da2I del2

do1 3  1 e1

da 2 3  I d2

% (A31)

3 2 1/3
- ~ and clearly the shear modulus of the array, G, is G 4(4 3 Gs 00) (A32)

At this point the Poisson's Ratio of the bcc array may be computed as follows:

IF-331 IF!e221
vbcc =FI Ti - 11T I(33)

2/3 __

21- vs)

a. Vbcc =-
2(-v 5) (A34)

2/3 1/3K ~. (1)2/3
(1-VS)

For different values of vs, the Poisson's Ratio of the bcc array, Vbcc, may be

computed; a Plot of Vbcc versus the Poisson's ratio of the spheres, vs,

appears in Fig. (21) together with the variation of vsc and v~fcc with v. for

;. easy comparison.
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A.3 Transversely Isotropic State of Stress (Triaxial Loading)

As in the case of the simple Cubic Array, the application of an aniso-
. ".1

tropic stress increment will result in a variation of the contact forces and,
9. .9 9.9.

consequently, of the corresponding contact stiffnesses. Therefore, in order

to obtain the stress strain relationships, the derivation must be performed

L

once more distinguishing between compliances at contacts with different

loading histories.*

Consider now the case of cross-anisotropic stress ("triaxial test")

imposed after the array has been subjected to an initial hydrostatic stress.

," . That is: (Fig. A3) ".

at t =o oll = U22 = 033 = 0o (A35)

St t1  O11=033 =Oo (A36)

022 = 0o + Ga (A37)

The contact forces during this Anisotroplc Loading are:

dN3  8 l - dP331 (A38)
31" 8

dN = : f dP1 dP33 (A39)
9- 32 - 24 L

.9, -93

.dN33 = -1 L'dPlL - dP2 2 + dP33l (A40)

in the case of transversely isotropic loading the above equations simplify to

The computation of the compliances for the case of anisotropic loading for
both the sc and the bcc arrays has been done in order for the results to be
used only for the special case of wave propagation. This way, the load was
assumed to reverse direction, and for this the elastic tangential compliances
were used. In the general case, the load could either increase or decrease
monotonically and different compliances in each case would apply. %

r 9

9 -. . . . . . . .. ]
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d~j 0(A4 1)

d~i 2 6 d~a(A42)

dN3 3 =±- dPa (A4 3)f
'4. 12

J This is the case of the two spheres in contact where the normal force is

increasing from No to No + N* and the tangential force from 0 to T*, with

* = ~~~ > f (Hindlin and Deresiewicz, 1953) '. .

dN

-. d=~ =V2>f (A44)
dN d~

(usually 0.5 < f ( 0.8 for sands)

in this case the Normal Compliance, Cn, is:

Cfl 2G a

N 
3 (I-vs)

-:where a3 R(NQ + N) (A45)

and finally

a3_ R3 ao [1 + j_ La (A46)

then

(1v5 ) 
2  1/3 1 a-1/3 J

[1+ I I (A47)

WT~ Gs2,o 3a R

The Tangential Compliance, Ct, is: -

%4 N N
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2 v1/ 3 ' "

Ct = -sa {-e +(l+e)[l-(l-e) 2(i+eL) } (A48),

'4_

-'f T L* T*

' 'where 6=-, L - and L*e" B fM o fM o .

However, in this case, since the load decrement is small, then L* - L 0,

therefore

+ 2-vs .A49)':"C t  4Gsa (A49) ;:

in this case

-t 2 -vs 1/3 -1/3 -
2=1ct 2 ] [1 + I (A50);2-1-Vs'ii 3 L4  R -.,4 G s 2 a o 3 .. .,

The constitutive law for this particular loading may be developed in the same

manner as in the case of the isotropic loading, i.e.

22= [ Cn + - Ct] dP22 (A51)
6 3

finally"a. ""fin y' -

4. ' d~z2 2  I~~L__ 1/3 1 + a -I/3 [/3)2-vs.'d•2 2

43 3 -4V G "G2 3 (3-v)1/3 da22

(A52) * %

for v 0.0 7,

2 1/3 -1/3
de22 - - [1 A -y 2 d2 (A53)

V3--~, 4Vr30G2 0  3 (Io

in the case of isotropic loading and v= 0, the above reduces to

a,7.
a. . . . . . . . .......



98

4.,

2 1 1/3:.
d22 = j d022 (A54)

V 4V3 Gs 2 oo

S. which is the same obtained before, eqn. (A30). Analogously

1/3 +-1/3

dell - _L 2/3 Fs_
( V G 2  3 0 2(1vs)1/3  da22

(A55)

N". for v. = 0 this reduces to zero.

The Shear Compliance is computed as follows:

d~ij 3 Cn + 3 C t dPij (A56)

3/3 -1/3

21/3 1 23-1/3 2-vs
d 2j I1-G[ + 1.4(1-vs) +

(A57)

for v s = 0 this reduces to.
r

dci=21/3 1 a-1/3%
av- [I 3 + L-J1 daij (A58)

3V--W T 4 G 2 a 3 (Yo

for aa = 0 this reduces to eqn. (A31). Therefore, for the case of vs * 0
'

2 1/3 1 _ -1/3
C11 11 = C22 2 2 = L3333 = j [1 + - * --1

*3Vp 4V3WGs20 0  3 ao

2/3 2-vs .- "
[(I-Vs) + ] (A59)

I1 
--

s)1/

"1
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__ _ 1/3 -1 /3;" -2 1 + I a .
C1122 =C2233 =C3311 - 4/_G2o; [ J]

V/j- 4VT Gs 2c Go 3 0

2/3 2-Vs (A60)

2 (1ns )1/3

1/3 1 Ca -1/3

'C1212 =C1313 C2323 [I J -

3V3 4V3 Gs2o 03

2/3 2-Vs______
[4(1-vs) + - (A61)

In this case the material will be isotropic under cross anisotropic loading

only if in the compliance matrix

C11 11 - C1 1 22 = C1 2 12

Performing the calculations we see that indeed,

• .' 1/3 - 1/3 ':

1 1 Oa 1 v.)2/3+ 2-vs-, 1111-Cl122=  [I + 3[o ]  [4( +-121
-.' 3_i (3-Vs)11 'j =3C12 2 ...,..3

Therefore, the bcc array is isotropic under cross anisotropic loading*; this

is a serious deficiency of the model and should be attributed to the symmetry

.' i. of the array.

. In the case that vs =0, the array is still isotropic but this time the

compliance matrix is again diagonal:

* * for the conditions specified previously.

. V"

.A ".44
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dell 1 0 0 0 0 0 doll

1 0 0 0 0 dG22

1/3 -1/3 1,

V3 { (4VTJ G2 ao, 3"Co "

V TV"d 212 1 0 0 d 1 2

.. -. 

%

de13 1 0 dol3

dC23 1 d23

(A62)

* 
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,", APPENDIX B SIMULATION OF TRIAXIAL AND PURE SHEAR LOADING IN CUBIC ARRAYS ..

The three regular cubic arrays will be subjected to a finite loading in

such a way so as to cause failure when applied along a principal direction.

In the case of the simple cubic array, this corresponds to a pure shear

loading, since for a triaxial loading the array locks. Conversely, the body

centered cubic and the face centered cubic array will be subjected only to

a .rlax-al loading, since for a pure shear loading the array also lock.

In order to obtain a finite stress strain relation in every case, the-

c o", Lances need to be Integrated along the loading path. Once this is done,

e ?. tfni'e displacements are computed and then the strains are obtained in the

same manner as in the Infinitesimal constitutive laws.

' . Finally, the load is increased until failure (gross sliding) occurs in

*, the array; in the statically determinate arrays gross sliding at a contact

Stranslates into failure of the cubic array. In the statically indeterminate

face centered cubic (fcc) array, the medium does not fail immediately, but

first the number of contacts reduces from 12 to 8 when the fcc array becomes

- statically determinate, and then sliding at one contact becomes failure.

* BI The Simple Cubic Array Subjected to Pure Shear Loading

Consider the Simple Cubic Array shown in Fig. 17 and consider a force T

acting in the x1 direction (Fig. Al). The s.c. array is subjected to an

initial isotropic force No and the value of T increases monotonically from

zero to T*, where T* is the value of T that causes failure in the array, while

N o remains constant. In this case the tangential displacement is given by

Mindlin (1949): S

% %.%

• .

;i

. . . . . .. . . . . . . . . . . . . . . . . . . o . . • . -. * '
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3 (2-Vs )  2/3
6 " fN O [l -(I l -- (A6 3)

8Gsa Mo

. ' where a3 = 3 -sN° "
8Gs

. 'V.

% is the radius of contact.

.S.

• . Now y =;substituting the expression for a3 into eqn. (A63) and after trans- "'

-'" }["forming the forces into stresses we obtain: '
2 1/3 2/3

3(2-v s )  a
y - [ f-O-] (A64)

"-s)1/3 12Gs

1 '

% E.i The above equation has been plotted in Fig. 22 for different values of o and

.€ f; obviously failure occurs when "

NowTy = fo o  (A65) ans-

iand at ths forint o sr e wle strain is

2 /3

" "Yf = Yt (a(A6-* (-\)1/3 2

Substituting the properties of quartz (Table 3) in eqn. (A66) we obtain d

-'.
-o', (A65

andYt ti 4.5 x 10- 3 (ao)2/3 (A66a)tsa i

.with in psi.
0.1112

. . ....'.B2 The Body Centered Cubic Array Subjected to Triaxial Loading -.,,

SubConsider the bcc array shown in Fig. 15, and consider a force Pa acting

in the x2 direction, Fig. A). The bcc array is subjected to an initial

"S- isotropic stress ao and the stress 022 = Oa is increased monotonically from 0 "'-.

* % * The value of vs = 0.15 used here was obtained from White (1964) and other

sources, and is different from v. = 0.31 used in a previous report (Dobry
et al., 1982). The value vs = 0.15 is more representative of quartz; as a
result, the values of the threshold strain yf computed using Eq. A66 and vs

0.15 are slightly different from those originally obtained by Dobry et al.
(1982).

*\-5 ' .-N.. . . .

• ~~~. . .- . .. .. . ,. .. . ... . . . . . . . . . .. . . . . . .. . . . ..... ,. ..-. * . .• .-.
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to a value Oa at which sliding occurs in the array. In this case, the loading

path is as follows

at t - to  PII P2 2 = P33  Po (A67)

at t = t Pll = P3 3 
= Po (A68)

P22 - Po + Pa 
(A69)

The contact forces are (eqns, A5, A6, A7)

dN = ± - [dP1 - dP33] = 0 (A70)i'- _.31 8

31 - - : 2d2 + dP32 dPa (A71)

24.1

;j dN32 = _+-± [~l P3

~!
dN33 VT [011P* + dP22 + dP33 ]  - dPa (A72).

and the ratio between the increment of the tangential force and the increment

of the normal force, s, is

dT dN3 2  '. "- = - V" (A73)
dN dN33

In this case a > f, the coefficient of interparticle friction, therefore the

*" values of the compliances are: CMindlin and Deresiewicz, 1953) .- *

.4. .- a) Normal Compliance, Cn

I-vs
-, Cn = a (A74)

this expression for Cn being valid no matter what the loading history of the

spheres is. Now

1/3
a ao (I + OL) (A75)

where

3(l-v5) 3 (1-vs) VT
ao  No R = -s  4 PO * R (A76)

8 8 s 4
- . , 

" -. 1

- ",", "- 4. ". ". r,. . 0 '. " . ',-.' " . - .' ' ', ' ' . - - - . - . ' ' " • ,,. " " ." .%
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Also f =

T
L fNo

The vertical displacement, 6 , has two components; a 6' and a 6'
22 33 23

component:

>" ~2 , 2 , <

62 -- 3-.--6 3 A 7

the 6 ' component is computed as follows: (.77)..- 33"""

.d3  Il-Vs  -1/3' = - (1 + eL)(A78)| n dN 2Gsa o

d63 3  i-vs f N -/ 
""7

I 2G+a (A79) :

dN -1 / 3 M0

.bi

N[I + N_ - N (A80): ,. .'. ,,633 -G a°  oi

finally

2 1/3 2/3'2/3 2/3 + I's2/3 ,0 0
2  13 1(A81)

633 = 2V-R(I-vs) L0 ) +- 2/3

The 6' component will be computed from the tangential compliance since it is
23

a tangential displacement; the tangential compliance is (Mindlin and

Deresiewicz, 1953):
'." *. 

e 'W'

-1/3
= 2-vs - - L) ] (A82)

t 4G(aA
'. +'.a"

- a - %. .* ""*

$,..- ...
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Simplifying:

Ct = el L(A3
2 5a (f-L)/ [ + (1-e)(1 - - m-;- ] (A83) .,Ct:4Gsa (I +EL)I1/3 "M+L)

and finally
.p'v

2 . .. 2-vs-1/3
- 5 Ct 4 11 - 1 +Y o (0-1)] (A84)

" 8a T 1/ 3 +-Ta

~now

d6-13 -/3 T -1/3

• Ct + oo + c t  (T-1 (6-1)] (A85)
dT 0 0o 0 0

"" where

"- Cto 0 4Gsao -"

Now

1/ 3 -1/3 d
T T -1/3 T I/ d.--

I L 623 = To Ct O 6(1+e T dT + Ct To0 1-6J[1+(O-1) T-1 T (A86)

-. "

. "finally

2-vsa~~oK 2/3f T2/

623 - fNo{ +-) -I -+ + ( C-1) -J - 1]} (A87)

.. .'-. Simplifying further and expressing the displacement in terms of stresses we

obtain:

:i 2 1/32/23
:[ ,. 23-V -f R (lu)/2u 4a~ 2 ] {[I °J23 o -1] _,) [ -lf2a) 2 3 -] w , w'"

(A88)

% -, " , *w " " . .4 . - , " . " . ", , -. . . . . . " . , . - ' * , . ".
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" In order to compute the vertical displacement of the array, 622, we have to

p j substitute equations (A81) and (A88) into eqn. (A77):

!2

622 = 63 + - 623 (A89)

2/3• " O°2J2/3 1 Oa -
622 = 4R(I= s)2 /3  4 2 G / 1 -a .-"

4 iG 
2  3%0

2 1/3 2/3
2-s 00 V 2 /3 v °a]2/3.."~P -i +j -11 i:::

(1-vs) 1  4VT G 2  38 Go 8 3

"' .1 (A90)

From the above equation, A90, the stress-strain relation may be computed

. ,for the bcc array under isotropic loading, and it is:

31/3 02£ I a 2/3  3/-f 2-vs"'

E22 02 {V3-(I-Vs)2 /3 [+ -- -] + 3V-
2 4VT .2- 3 o 4 (1V)1/3

,'["+VT- a)2/3 f 1) /a 2/3 ('9"
-- ] [(1 + (- I- -) - i (

% 3 8 3f o

The above equation is plotted in Fig. 23 for various values of o and f. At

o -- ~'E this point, the value of Oa/Go which causes failure in the array must be

determined. Failure is defined as sliding at the contacts; this time since

I the bcc array is statically determinate failure in one contact implies failure

of the array. Furthermore, because of the symmetry of the array, failure will

-, occur simultaneously at all contacts. Sliding will occur when

No+N f (A92) '

We know that

- -=- ---.-. . . ... • . . .- L . . .- . .. .
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FIX.,

T -6_A (A9W3)
12

N A a (A94)
12

N0O AT 0 (A9 5)
1~~, 4

where A is the area of the face of the bcc array. Then: ..-

T f(N0 + N) (A96)

-A + 00) (A97)
* 12 12(A a+ 4 o

V2
322 f( a + a (A98)

* 2 3 a 0

0122 fj f (A99)

ao 3 3

and finally, aa/00 at failure, (aa/ao) is
t

Ca 3f
(AlOO)

0 0f ~

If 022 Go + Ga (total stress), then

40I22 f (AlOI)

f
y 3 3 *

in terms of total stress (Fig. 24)

In order to compute the strain at failure, £22 ,we must substitute the

equation for (022/ao) ,eqn. (AWO) into the stress-strain relation, eqn.
f

* (A91). Doing this we obtain ''

* S.
A P
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-o-

N: ,. 1/31/ 2/3 3T 2 v

0 a°2  J (V (l-vs) 2 / 3 [ I + -j -11 + 3V2f iv
22f 4VT Gs 2 s V---f 4 l-Vsl

4VT[ 5
2  2/3 f VT 2/3

1-1-[1 + [ 1) 2 - 11 (A102)
V'2-f V-- f"

for the properties of quartz (Lamb and Whitman, 1964, Ko and Scott, 1967,

White, 1964)

Gs  4.783 x 106 psi

v 0.15s

f = 0.5

tk.e strain at failure is

"22 = 3.438 x I0- 3 002/3 (in percent) (A103)

and Yt = E22 for vs = 0.
f

which is the threshold strain Yt for the array. Thus an equation is plotted

11 in Fig. 21 together with the other expressions for yt for the other arrays

* for easy comparison.

B3 The Face Centered Cubic Array Subjected to Triaxial Loading

The triaxial loading of a Face Centered Cubic Array was solved by Brauns

and Leussink (1970). In this work, the stress-strain relationship is not ob-

4% tained for the whole range of values of o22/oo but only for those which make

the array statically determinate. It is extremely hard to determine the

values of compliances for cross anisotropic loading (Duffy and Mindlin, 1957);

0 therefore once sliding occurs and the number of contacts decreases from 12 to

8, the array becomes statiLrlly determinate and it is possible to compute a

. . stress-strain relation up to the point that the array fails (range b - Fig.

. . . . . . .... .. .. . . . -
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B2). Once the array has failed, simple geometric considerations make the

computation over the strain range c possible (Fig. B2).

Consider the fcc array in Fig. Bla and the cross anisotropic loading as

shown. The free body diagram of the octant of sphere A is shown in Fig. Bib.

The equilibrium conditions yield

N + T =V2R 2 a1 (A104)

N- T + N1 I 2N'2R2 03 (A105)

Also the sum of the displacements around a closed path must vanish (Duffy and

Mindlin, 1957), which yields

al - a+ 6 0(A106)

- -The normal compliance is found to be

_n 1-Vs (A107)

[3(01-vs)G s2 RN]I

~ ., and the Tangential Compliance

4.N

Ct d6 --s dT (A108)

T 2 [30(1v 5) 2RN]'1/ 3  [1 T- /

The strain is

-- (a + 6) (A109)
2R

* Integrating the compliances and substituting the results into eqn. (A109), we

find after transforming the forces into stresses that the strain, ell, is

given by



3 V T ( l - v s ) 2 / 3 , O i 2 / 3 -f ( i , 2 / 3" -'''' 0 :
2/3 I-f al 2/33 10e+2 (- J] -12 -- 0 -f - I} 0 3 3 2/3 (AlIO)

033I~ I+f 033

this expression being valid only for the range of (allG/33) in which the array I

is statically determinate, that is 8 contacts per sphere (range b in Fig. BI).

Failure is defined again as sliding, but this time when the whole array

fails, that is when the number of contacts from 8 reduces to none.

Using the same criteria as in the other arrays, the critical stress ratio

at which the array fails is J -
... "..$

'all

• II =2 l+f (AIII) '--
'" 3 I-f

f .

The above equation is plotted in Fig. 24.

'

.[...
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+i 0*33*

033'

(a) (b)

Fig. BI a) Representative Unit Volume of an fcc Array with State
of Stress

b) Sphere Centered at Apex A with Applied Stresses, Contact
Forces and Displacements (Brauns and Leussink, 1970)

25,

2 T

1f!5

15N.T,.,'

1 25 ,**.9

, - ~~~(a b ""
.-

Y0 002 004 025 0.5 075 1 125 15 1752
vertical strain, fi()__

Fig. B2 Triaxial Compression of an fcc Array of Glass Spheres: .
Analytical and Experimental Results

(Frauns and Leussink, 1970)
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